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Abstract 1 

Understanding the function of sleep requires studying the dynamics of brain activity across 2 
whole-night sleep and their transitions. However, current gold standard polysomnography (PSG) 3 
has limited spatial resolution to track brain activity. Additionally, previous fMRI studies were too 4 
short to capture full sleep stages and their cycling. To study whole-brain dynamics and 5 
transitions across whole-night sleep, we used an unsupervised learning approach, the Hidden 6 
Markov model (HMM), on two-night, 16-hour fMRI recordings of 12 non-sleep-deprived 7 
participants who reached all PSG-based sleep stages. This method identified 21 recurring brain 8 
states and their transition probabilities, beyond PSG-defined sleep stages. The HMM trained on 9 
one night accurately predicted the other, demonstrating unprecedented reproducibility. We also 10 
found functionally relevant subdivisions within rapid eye movement (REM) and within non-REM 11 
2 stages. This study provides new insights into brain dynamics and transitions during sleep, 12 
aiding our understanding of sleep disorders that impact sleep transitions.  13 
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Introduction 1 

Given the significant number of people experiencing sleep issues in modern society, there is a 2 
growing need for a better understanding of human sleep and its function (Lancet, 2022). Sleep 3 
is characterized by relative stationary states, each believed to serve specific functions. To 4 
characterize these states, human sleep research has historically classified sleep into a set of 5 
stages using polysomnography (PSG) (Berry et al., 2020; Rechtschaffen and Kales, 1968), 6 
which combines electroencephalography (EEG) measures of brain activity with several 7 
physiological measures. These sleep stages include the progressively deeper sleep stages of 8 
N1, N2, and N3 non-rapid eye movement (NREM), as well as REM. Stages are characterized 9 
by different patterns of cortical excitability, as a result of varying levels of modulatory 10 
neurotransmitters (Jones, 2020). Across a full night of sleep, these stages cyclically alternate, 11 
with REM sleep typically occurring 90 minutes after falling asleep and becoming longer as the 12 
night progresses. This cycling is thought to be related to homeostasis and memory 13 
consolidation (Diekelmann and Born, 2010; Strauss et al., 2022). Neuroimaging studies using 14 
techniques such as Positron Emission Tomography (PET) and functional MRI (fMRI) have 15 
identified unique activity patterns for each PSG stage, contributing to our understanding of 16 
sleep's functional role (Braun et al., 1997; Damaraju et al., 2020; Picchioni et al., 2013; Rué-17 
Queralt et al., 2021; Tagliazucchi and Laufs, 2014; Tagliazucchi and van Someren, 2017; Zhou 18 
et al., 2019). 19 
 20 
While these PSG-guided neuroimaging studies provided new information about sleep function, 21 
our understanding of brain dynamics is limited by the low temporal resolution of PSG-based 22 
sleep scoring rules (i.e., 30-second epochs), low spatial resolution (i.e., limited EEG channels 23 
on the scalp), and the subjective visual inspection rules (Decat et al., 2022; Himanen and 24 
Hasan, 2000; Lambert and Peter-Derex, 2023). Alternative to PSG-based sleep staging, 25 
applying an unsupervised learning method, the Hidden Markov Model (HMM) (Stevner et al., 26 
2019; Vidaurre et al., 2017), to sleep fMRI data can objectively model the time series of sleep 27 
and infer sleep brain states that recur at different points during sleep. A recent study 28 
demonstrated promising results in capturing NREM sleep transitions by applying HMM to 29 
relatively short bouts of sleep (<1 hour) fMRI data (Stevner et al., 2019). However, because the 30 
REM stage typically occurs 90 minutes after falling asleep and lasts progressively longer over 31 
time, capturing brain dynamics associated with sleep cycling requires whole-night data. 32 
 33 
In addition, given that studies on sleep stage transitions have shown promising results in 34 
diagnoses of various sleep disorders, including narcolepsy (Christensen et al., 2015), chronic 35 
fatigue syndrome (Kishi et al., 2011), and insomnia (Wei et al., 2017), it is of great interest to 36 
establish an objective and reliable measurement of brain states transitions within and between 37 
PSG sleep stages. To achieve this goal, we applied HMM to a unique and extensive dataset of 38 
EEG-fMRI concurrent recordings acquired over 8 hours of sleep each night for two consecutive 39 
nights (Moehlman et al., 2019). This analysis revealed 21 unique brain states, surpassing the 40 
number of PSG-defined sleep stages. For potential application in clinical settings, we tested 41 
whether our HMM model trained using night 2 data can predict night 1 data. As it turned out, the 42 
identified brain states were highly consistent between night 1 and night 2. Furthermore, 43 
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analyzing the transition probabilities between HMM states revealed a significant subdivision 1 
within N2 and within REM sleep stages. This data-driven, PSG-blind analysis of fMRI data 2 
provides reproducible brain states and their transition probabilities, potentially serving as a 3 
biomarker of sleep transitions in both normal and clinical settings. 4 
 5 
 6 
 7 

Results 8 

HMM brain states.  9 
To study brain activity representative of the entire Wake-NREM-REM-Wake sleep cycle, we 10 
analyzed data from concurrent whole-brain EEG-fMRI measurements on healthy, non-sleep-11 
deprived participants (n=12, age 24 ± 3.5, 8 female) over two successive, entire nights of sleep 12 
(Moehlman et al., 2019). This data was acquired for an independent project that included eight 13 
randomly timed acoustical arousals to gauge sleep depth (Moehlman et al., 2019). PSG-based 14 
sleep staging was conducted by a sleep technologist, utilizing data from EEG, EMG, ECG, and 15 
EOG, following the criteria outlined by the AASM (Berry et al., 2020).  16 
 17 
Following data preprocessing (see Methods section for details), the fMRI time courses from 18 
voxels were spatially averaged within each of the 300 regions of interest (ROIs). These ROIs 19 
encompassed cortical, subcortical, and cerebellar areas from the Seitzman 300-ROI atlas 20 
(Seitzman et al., 2019). To ensure consistency and comparability, the ROI time courses were 21 
demeaned and variance-normalized for each participant and then concatenated along the 22 
temporal dimension. Of note, all 12 participants exhibited at least one complete sleep cycle, 23 
encompassing all four sleep stages (N1-3 and REM), during both Night 1 and Night 2 24 
(Moehlman et al., 2019). This uniquely comprehensive dataset provided a robust foundation for 25 
our analyses. 26 
 27 
The HMM estimated from the Night 2 data encompassed a collection of whole-brain states. 28 
Each of these states was characterized as a multivariate Gaussian distribution, incorporating 29 
two key components: (i) a mean activation distribution, signifying the average activity levels 30 
within each ROI when a state was active, and (ii) a functional connectivity (FC) matrix, 31 
representing the temporal co-variations among ROIs while in that state.  32 
 33 
Furthermore, the HMM featured a transition probability matrix that detailed the likelihood of 34 
transitioning between every pair of states. Each state was accompanied by a state timecourse, 35 
delineating the specific time points (defined by the fMRI temporal resolution of 3 seconds) when 36 
the state was active. Notably, the HMM was constructed with 21 distinct states and was devoid 37 
of any prior knowledge regarding PSG staging during its estimation. For a comprehensive visual 38 
representation of the analytical process, please refer to Figure 1 (see the Methods section for a 39 
detailed explanation). Also, there is no HMM state that was participant-specific. That is, all 21 40 
HMM states can be found in each participant’s fMRI timecourse.    41 
 42 
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 2 
Figure 1. Whole-brain activity dynamic identified from fMRI sleep recording using a Hidden 3 
Markov Model. A. Participants slept inside a scanner from ~23:00 to ~07:00 for two consecutive 4 
nights, with concurrent EEG-fMRI recording. During each night, the fMRI experiments were 5 
intermittently disrupted by either acoustical arousals (8 random arousals) or spontaneous 6 
awakenings. Sleep stages and slow wave density were derived from EEG signals alone. B. 7 
HMM was trained on the principal components of fMRI signals of Night 2. Then the identified 8 
HMM states were generalized to Night 1 fMRI signals. Finally, we studied the state-related 9 
variations in fMRI activation, FC patterns, and EEG measures. Notes: EEG, 10 
electroencephalographic; TR: repetition time; FC, functional connectivity; ROI, region of interest; 11 
PCA, principal component analysis. 12 
 13 
HMM states show PSG stage specificity 14 
The 21 brain states (see Figure 2B), identified solely from fMRI, exhibited a mixture of six PSG-15 
based sleep stages: N1, N2, N3, REM, Wake, and an "Undefined" stage for epochs that could 16 
not be confidently assigned to one of the four following sleep stages: N1-3 and REM. 17 
 18 
To investigate the relationship between HMM states and PSG-based sleep stages, we adopted 19 
a "winner-takes-all" approach that assigned HMM states to the sleep stage where they most 20 
frequently occurred. Thirteen of the 21 brain states were most frequently associated with N2 21 
sleep stages. HMM states 8 and 10 predominantly occurred during N3 sleep, while HMM states 22 
6 and 19 were prevalent during REM sleep. HMM state 4 corresponded to the undefined sleep 23 
stage, and HMM states 13, 16, and 20 were primarily observed during Wake. Intriguingly, none 24 
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of the HMM states were predominantly linked to N1 sleep. However, HMM state 11 was active 1 
for a comparable duration during both N1 and N2 sleep stages. See Figure 2B. 2 
 3 
The temporal characterization of these brain states enabled us to investigate the subtle details 4 
of brain dynamics within the traditional PSG-based sleep stages. The average duration, referred 5 
to as "Lifetime," of the HMM states varied from 8.7 to 36 seconds. Specifically, the mean 6 
Lifetime in states associated with N2 stages tended to be shorter compared to those linked to 7 
N3, REM, and Wake (with exceptions of state 13), as illustrated in Supplementary Figure 1. 8 
 9 

 10 
Figure 2. PSG-based sleep stages and HMM states for each night. A. Distribution of sleep 11 
stages for all 12 participants during Night 2. B. Distribution of sleep stages for 21 HMM states 12 
during Night 2. C. Distribution of sleep stages for all 12 participants during Night 1. D. 13 
Distribution of sleep stages for 21 HMM states during Night 1. The correlation coefficient 14 
between sleep stage distributions of HMM states during Night 2 and those during Night 1 is 15 
0.94, p < 0.0001. 16 
 17 
Sleep states as modules of HMM state transitions.  18 
The use of a data-driven approach empowered us to explore the temporal dynamics of HMM 19 
states, and enabled us to investigate whether the fMRI-driven HMM states reveal novel 20 
dimensions of the Wake-NREM-REM-Wake sleep cycle that are hidden from traditional PSG 21 
analyses. We examined the transition probabilities among HMM states, identifying modules of 22 
HMM states that exhibited more frequent transitions between each other than to other states 23 
(Stevner et al., 2019; Vidaurre et al., 2017).  24 
 25 
The transition probabilities of HMM brain states were organized into a 21 × 21 transition matrix. 26 
To explore the potential clustering of states with prevalent mutual transitions, a modularity 27 
analysis was performed on this matrix based solely on transition probabilities (see Methods 28 
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section for details). As illustrated in Figure 3, this analysis identified five distinct transition 1 
modules, encompassing N3-, REM-, Wake-, and two different N2- modules. Importantly, this 2 
modularity analysis was conducted independently of PSG-based sleep stages. Interestingly, it 3 
revealed a natural clustering of states associated with the same sleep stages. For instance, two 4 
HMM states, 6 and 19, both linked to REM sleep, were grouped within the same module. 5 
 6 

 7 
Figure 3. Results of the modular analysis based solely on transition probability between HMM 8 
states. Each row represents the transition probability of the current HMM state (y-axis) to other 9 
states (x-axis). Twenty-one HMM states were categorized into five modules (black boxes): from 10 
left to right, light-N2 module (states 5, 7, 9, 14, 15, 18, 21), N3 module (states 4, 8, 10), deep-11 
N2 module (states 1, 2, 3, 12, 17), REM module (states 6 and 19), and Wake module ( states 12 
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11, 13, 16, 20). The pie chart under each state represents the sleep stage distribution for the 1 
state.   2 
 3 
Twelve N2-related HMM states were divided into two separate modules. The first module is 4 
characterized as the light-N2 module, with higher transition probabilities to REM and Wake 5 
modules compared to the other module. The second module exhibited low transition 6 
probabilities to both the REM and Wake modules and is referred to as the deep-N2 module.  7 
 8 
A similar duality was evident within the REM module. HMM state 19 displayed a notably higher 9 
transition probability to states in the Wake module compared to HMM state 6. 10 
 11 
Within the Wake module, four HMM states were observed. State 11 was found to be linked to 12 
both N1 and N2 sleep stages, while the other three states (13, 16, and 20) were associated with 13 
the Wake stages. Further investigation revealed that state 13 typically occurred later in the night 14 
and later within an MRI run (see Supplementary Figure 2 E&F), suggesting it represents post-15 
sleep wakefulness, whereas states 16 and 20 were pre-sleep wakefulness. State 13 also 16 
showed higher PPG variation, respiratory variation, and heart rates than states 16 and 20 (see 17 
Supplementary Figure 2 B-D). This observation was confirmed by the transition probability 18 
matrix, that only HMM state 13 has a lower chance of transition into N2- or N3 -related states, 19 
especially for the states within the light-N2 module, compared to HMM states 16 and 20.  20 
 21 
HMM states generalize to Night 1 fMRI data.  22 
Next, to test the robustness of our HMM approach, we employed a semi-supervised learning 23 
approach (https://github.com/OHBA-analysis/HMM-MAR/wiki/Theory#semi) to predict Night 1 24 
data based on the model trained on Night 2 data. Specifically, we maintained state assignments 25 
from Night 2 and applied the model to Night 1. The resulting model indicated that despite having 26 
fewer REM and N3 stages during Night 1 (See Figure 2A&C), there was a significant 27 
correlation between the sleep stage proportions of the HMM states for Night 1 and those for 28 
Night 2 (r = 0.94, p < 0.0001, see Figure 2 B&D). Moreover, the physiological variables 29 
displayed similar patterns between Night 1 and Night 2 (see Supplementary Figures 2&3). 30 
 31 
fMRI activation and FC patterns of HMM states.  32 
To investigate brain activity patterns specific to individual HMM state, we calculated the spatial 33 
fMRI activation map and FC pattern of each HMM states relative to the averages over all HMM 34 
states. Supplementary Figure 4 showcases the mean fMRI activation for each state, while the 35 
associated FC patterns are depicted in Supplementary Figure 5. 36 
 37 
For mean fMRI activation, Wake-related HMM state 20 demonstrated the classic opposite 38 
activation pattern between the default-mode network (DMN) and its anti-correlated networks 39 
(ACNs), see Figure 4 and Supplementary Figure 4. In contrast, during sleep-related HMM 40 
states, e.g., states 8 and 10, DMN and FPN showed the same activation direction. 41 
 42 
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 1 
Figure 4: Mean fMRI activation in ROIs within DMN and FPN for each HMM state. Bottom right 2 
panel: illustration of DMN (purple) and FPN (green) nodes. Note: DMN: Default Mode Network; 3 
FPN: Frontoparietal Network. 4 
 5 
For FC patterns, similar anti-correlated patterns were found (see Supplementary Figure 5). In 6 
wake-related HMM states 16 and 20, the FCs between DMN and Salience Network (SAL)/ 7 
Control Network (CON) were negative, while during N3-related HMM states 8 and 10, these 8 
FCs were positive.    9 
 10 
As expected, the FC patterns between the Visual Network (VIS) and other sensory networks 11 
(Auditory Network, AUD, and lateral/dorsal Somatomotor Network, lSMN/dSMN) were positive 12 
during wake-related HMM states but were negative during sleep-related HMM states. One 13 
notable exception was HMM state 6 (REM-related), in which VIS had a positive correlation with 14 
lSMN and AUD, mirroring those in wake-related states. During REM-related HMM states 6 and 15 
19, the Basal Ganglia (BG) and Thalamus (THAL) had a strong positive correlation with lSMN 16 
and AUD.  17 
 18 
When we correlated the FC patterns of each state to those of another state, the FC patterns of 19 
states that belong to the same module or are related to the same PSG-based sleep stages were 20 
highly correlated (similar to the modular results in Figure 3), see Supplementary Figure 6.  21 

  22 
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Discussion 1 

By applying an unsupervised learning method to Night 2 of two-night fMRI sleep recordings, we 2 
deduced 21 HMM states and their transition probabilities, independently of PSG-defined sleep 3 
stages. The identified HMM states showed excellent reproducibility to Night 1 data in a semi-4 
supervised manner, a feat not previously demonstrated. Moreover, through modular analysis 5 
focused solely on transition probabilities, a duality within REM-related and N2-related HMM 6 
states was found. These findings offer unique new information about brain sleep states and their 7 
transitions that extend beyond previous PSG-based research, as well as fMRI research without 8 
whole-night recordings. 9 
 10 
Our work addressed well-known shortcomings of PSG-based sleep staging (Abeysuriya and 11 
Robinson, 2016; Decat et al., 2022) by integrating insights from whole-brain fMRI recordings. 12 
First and foremost, while traditional PSG-based sleep staging is based on 30-second epochs, 13 
HMM analysis allows for a state-specific duration as short as the fMRI temporal resolution (here 14 
3 seconds). On average, the duration of HMM states is 12 seconds (see Supplementary 15 
Figure 1), suggesting a more detailed characterization of brain states compared to PSG-based 16 
sleep stage analysis. Secondly, in terms of spatial resolution, the functional atlas used in our 17 
study encompassed 300 ROIs, offering a more detailed view of activation patterns across the 18 
entire brain, including subcortical and cerebellar regions that are ignored in PSG-based sleep 19 
staging. Third, our approach is mostly automated and objective, eliminating concerns related to 20 
inter-rater reliability issues and human error (Lambert and Peter-Derex, 2023; Lee et al., 2022; 21 
Rosenberg and Van, 2013). Lastly, identifying transitions between sleep stages can pose 22 
challenges when relying solely on PSG data. In contrast, the HMM is explicitly designed to 23 
model these transitions between states, providing a better understanding of the dynamic shifts 24 
that occur throughout the sleep cycle, especially when the sleep stages transition is not linear 25 
from Wake to NREM to REM in the second half of night. 26 
 27 
Previous research suggests that the analysis of sleep data at a finer temporal resolution than 28 
PSG-based sleep staging may be valuable. For example, distinct and recurring states of waking 29 
brain activity may be as brief as 100 ms during wake (Baker et al., 2014; Koenig et al., 2005). In 30 
mice, rapid (seconds-scale) fluctuations in brain-wide neuronal spiking activity has been 31 
reported during states of low alertness, attributed to fluctuation in adrenergic and cholinergic 32 
neuromodulation from basal forebrain and locus coeruleus (Aston-Jones and Bloom, 1981; 33 
Collins et al., 2023; Kjaerby et al., 2022; Osorio-Forero et al., 2023). Capturing second-scale 34 
changes of brain states with the analysis approach employed  in the current study may therefore 35 
allow a more comprehensive investigation of the functional roles of sleep and shed light on the 36 
mechanisms by which these roles are accomplished. 37 
 38 
The modular analysis, which solely relied on transition probabilities between states, uncovered 39 
a significant discovery. This analysis clustered HMM states into modules closely associated with 40 
PSG-defined sleep stages. This suggests that transition probabilities contain essential 41 
information about sleep states and PSG-based sleep stages. For instance, a module 42 
predominantly linked to the N3 stage consisted of two N3-related states and one undefined 43 
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state. Importantly, all three states also exhibited the highest slow-wave density among all states 1 
(see Supplementary Figure 2A).  2 
 3 
Within the Wake module, there were four HMM states, each representing pre-sleep wake 4 
(states 16 and 20), post-sleep wake (state 13), and N1-2 (state 11). The absence of a dedicated 5 
module/state representing the N1 stage is unsurprising, considering that N1 does not distinctly 6 
manifest as a well-defined sleep stage (Carskadon and Dement, 2011) and it has the lowest 7 
inter-rater reliability (0.24 vs 0.76 overall) among all the PSG-defined sleep stages (Lee et al., 8 
2022). 9 
 10 
Two modules were associated with the N2 stage. One of these termed the "Deep-N2 module," 11 
exhibited a low likelihood of transitioning to REM and Wake while showing a slightly higher 12 
probability of transitioning to N3-related states when compared to the other module, referred to 13 
as the "Light-N2 module". This finding aligns with previous studies (Brandenberger et al., 2005; 14 
Decat et al., 2022), which separated the N2 stage into a quiet type (before the transition into N3 15 
stages, which resembles the Deep-N2 module in the current study) and an active type 16 
(preceding the transition to REM, related to the Light-N2 module).  17 
 18 
The two REM-related states (6 and 19) within the REM module were notably different in several 19 
aspects. First, state 19 displayed a higher propensity for transitioning to the Wake module in 20 
contrast to state 6. Second, state 6 tended to occur towards the end of sleep and also late 21 
within the fMRI run (see Supplementary Figure 2 E&F). Third, the FC patterns between 22 
sensory networks (Vis, lSMN, AUD) and other cortical networks, i.e., DMN and MTL, were 23 
different in those two states. For example, in state 19, the MTL was positively connected to 24 
lSMN/AUD, while exhibiting negative connections with those sensory networks in state 6 (see 25 
Supplementary Figure 5). These differences suggest an alignment of the HMM REM states 26 
along the previously defined microstates of REM, i.e., “phasic” and “tonic” episodes (Simor et 27 
al., 2020). Tonic REM is thought to be an intermediate state between wakefulness and phasic 28 
REM and is associated with a higher environmental awareness. Phasic REM occurs more often 29 
at the end of the night and is associated with a higher level of brain activity (Simor et al., 2020). 30 
Taken together, HMM state 19 might represent tonic REM given the high transition probability to 31 
Wake-related HMM states, while HMM state 6 might be related to phasic REM with higher FC 32 
and occurring later in the night.   33 
 34 
In terms of both BOLD activation and FC patterns, a notable divergence between N3-related 35 
states and Wake-related states is observed in the interaction between DMN and its ACNs 36 
(SAL/CON/FPN, etc.). It is plausible that the degree of correlation or anticorrelation between 37 
DMN and its ACNs is a pivotal factor influencing the transitions from wakefulness to light sleep 38 
and, subsequently, to deep sleep. The SAL is considered crucial for cognitive control, as it 39 
handles the perception and response to homeostatic demands (Menon, 2011; Peters et al., 40 
2016; Seeley, 2019). It further acts as a mediator for dynamic interactions among other 41 
prominent large-scale brain networks engaged in externally focused attention (FPN) and 42 
internally directed self-referential cognitive processes (DMN). It is plausible that during sleep, 43 
the mediating function of the SAL is temporarily suspended to allow for its restoration. Recent 44 
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findings have indicated that disruptions in SAL connections were observed following one night 1 
of sleep deprivation (Fang et al., 2015) or in individuals with insomnia disorder (Cheng et al., 2 
2022; Li et al., 2022; Wei et al., 2020). 3 
 4 
There are a few limitations worth mentioning. Firstly, we made an arbitrary selection of 13 5 
principal components for PCA, accounting for 40.7% of the total variance. While this percentage 6 
of explained variance may seem low, it was a necessary step to stabilize the fitting of the 7 
Hidden Markov Model (HMM) in the current study. Notably, the trained HMM demonstrated 8 
generalization to Night 1 data, validating the chosen principal components as they encompass 9 
sufficient information about the fMRI signals. Secondly, while our study involved a relatively 10 
small number of participants (12), it included a large amount of fMRI data (~16 hours scan) per 11 
participant. While the HMM trained on data from 12 participants was robust, future research 12 
may benefit from utilizing a larger number of participants to test the out-of-sample generalization 13 
of the current results.  14 
 15 
To summarize, we demonstrated how a data-driven analysis of an extensive sleep fMRI dataset 16 
can reproducibly characterize the full pattern of arousal state changes that recur during a whole 17 
night's sleep. The findings underscore the advantages of the whole-night fMRI data, over the 18 
traditional PSG sleep staging and previous fMRI sleep studies, in achieving a fine-grained 19 
characterization of brain sleep states and their transitions. The successful generalization of our 20 
approach trained on Night 2 to Night 1 data shows its robustness, reliability, and objectivity 21 
across multiple nights. Our exploration of transitions between HMM states unveiled modules 22 
closely linked to distinct sleep stages, revealing a duality within N2-related modules that further 23 
dissects N2 stages into 'light' and 'deep' N2 modules. We identified a duality with REM-related 24 
HMM states, which resembles the 'phasic' versus 'tonic' REM. Additionally, we separated pre-25 
sleep from post-sleep Wake states. Analysis of brain activation and FC patterns of HMM states 26 
indicated that the connections between DMN and ACNs, especially SAL, may play a critical role 27 
in the transition from wake to light sleep and subsequently to deep sleep. Collectively, this 28 
enriched comprehension of brain dynamics during nocturnal sleep holds the potential for 29 
identifying promising biomarkers associated with sleep disorders that significantly impact sleep-30 
stage transitions. 31 
 32 

  33 
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Methods 1 

Data acquisition and processing. All the data used in this study followed approved human 2 
subjects research protocols approved by the National Institutes of Health Combined 3 
Neuroscience Institutional Review Board (USA, Protocol Number 16-N-0031), and informed 4 
consent was obtained from the participants. Data acquisition was conducted as part of a 5 
previously described sleep experiment (Moehlman et al., 2019), encompassing two consecutive 6 
nights of concurrent fMRI-EEG data collection while participants slept inside a 3 T Siemens 7 
Prisma MRI scanner. To ensure a consistent sleep schedule, participants were instructed to 8 
adhere to regular sleep patterns for two weeks before the experiments, and compliance was 9 
verified with wearable devices. No sleep deprivation protocols were implemented during the 10 
course of the study. 11 
 12 
The fMRI data encompassed whole-brain scans consisting of 50 axial slices, captured at a 13 
spatial resolution of 2.5 mm (2.5 × 2.5 mm2 in-plane), with a 2.0 mm slice thickness and a 0.5 14 
mm slice gap. The data was acquired at a temporal resolution of 3 seconds, employing a 90° flip 15 
angle and an echo time of 36 ms. Data acquisition utilized a multi-slice echoplanar imaging 16 
approach in an interleaved manner. Simultaneously, EEG data was recorded at a digitization 17 
rate of 5 kHz, employing 64 channels to comprehensively cover the scalp. The MR-compatible 18 
EEG system used was from Brain Products (Gilching, Germany). 19 
 20 
Additionally, concurrent peripheral physiological measures were acquired, including a chest belt 21 
to monitor respiratory chest excursion and finger skin photoplethysmography (PPG) to monitor 22 
cardiac rate and peripheral vascular volume. These physiological parameters were collected 23 
using a Biopac acquisition system with TSD200-MRI and TSD221-MRI transducers, combined 24 
with an MP 150 digitizer sampling at 1 kHz, sourced from Biopac in Goleta, CA, USA. To ensure 25 
accurate synchronization, data collection for EEG was timed using the 10 MHz clock from the 26 
MR instrument. The Biopac device also recorded volume triggers from the MRI scanner to 27 
facilitate synchronization of peripheral physiology recordings. 28 
 29 
A total of 12 subjects (aged 18–35 years, including 8 females), out of 16 attempts, completed 30 
both nights of scanning (from 23:00 to 07:00 roughly). Throughout each night, the fMRI 31 
experiments were intermittently disrupted by either acoustically stimulated or spontaneous 32 
awakenings. As a consequence, a series of experimental runs was generated, with durations 33 
ranging from 5 minutes to 3 hours. Detailed fMRI, EEG, and peripheral physiological measures 34 
preprocessing steps can be found elsewhere (Moehlman et al., 2019; Picchioni et al., 2022). 35 
Briefly, a tailored version of the ‘afni_proc’ script in AFNI software was used (Cox, 1996), 36 
including outlier removal, detrend, RETRIOCOR (Glover et al., 2000), slice timing correction, 37 
motion correction, normalization, registration, global signal removal, and censoring (when a 38 
motion parameter exceeded 0.3 mm or 0.3 degrees). The EEG signal underwent correction for 39 
MRI gradient and cardio-ballistic artifacts and was subsequently down-sampled to a rate of 250 40 
Hz using the Analyzer software (Brain Vision, Morrisville, USA). The process of sleep scoring 41 
was carried out using a central electrode in 30-second epochs, in accordance with established 42 
criteria with standard filters, and channel references (Berry et al., 2020). ICA cleaning and slow 43 
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wave auto-detection script were applied on EEG signals (Betta et al., 2021; Mensen et al., 2016; 1 
Riedner et al., 2007). Sleep score, slow wave density, and peripheral physiological measures 2 
were resampled into a 3-second resolution aligned with the BOLD signal.  3 
 4 
HMM overview. In pursuit of a data-driven approach to understanding the brain dynamics in the 5 
fMRI signals, we employed an HMM(Vidaurre et al., 2018, 2017) to analyze timecourses 6 
extracted from 300 ROIs based on the Seitzman 300-ROI atlas (Seitzman et al., 2019). To 7 
prepare the data for analysis, we first standardized the participant-specific sets of 300 ROI 8 
timecourses, which were then concatenated across all participants. This resulted in a data 9 
matrix with dimensions of 300 × (12 × ~5500) for each night, with approximately 5500 repetition 10 
time (TR), excluding breaks between runs and censored TR), accounting for 8 hours of scan 11 
time based on a 3-second TR. 12 
 13 
The HMM inference process sought to find a sequence of recurring discrete states, each 14 
characterized by a distinct statistical arrangement of data. We employed a Gaussian HMM 15 
using the Matlab toolbox HMM-MAR (https://github.com/OHBA-analysis/HMM-MAR), where 16 
each state was modeled as a multivariate normal distribution encompassing both first-order 17 
statistics (mean activity) and second-order statistics (covariance matrix). These state 18 
parameters were determined collectively at the group level, while the state timecourses were 19 
individually defined for each subject. As a result, the HMM identified periods of quasi-stationary 20 
activity, during which the 300 ROI timecourses displayed specific configurations of mean activity 21 
and FC. 22 
 23 
Given the high spatial dimensionality of fMRI data, we employed Principal Component Analysis 24 
(PCA) to reduce the number of parameters in the decomposition process as a common practice. 25 
This not only improves the signal-to-noise ratio but also enhances the overall robustness of 26 
HMM results (Stevner et al., 2019; Vidaurre et al., 2018, 2017). By selecting the top 13 principal 27 
components, we retained 40.7% of the signal variance, resulting in a data matrix with 28 
dimensions of 13 × (12 × ~5500). This matrix was then input into the HMM. For a more detailed 29 
overview of the analytical workflow, please refer to Figure 1. 30 
 31 
Choice of the number of HMM states. Our analysis involved running the HMM across a range 32 
of model orders, specifically spanning from 4 to 25. The assessment of each solution 33 
encompassed various summary statistics, with the most pertinent findings illustrated in 34 
Supplementary Figure 7. 35 
 36 
Supplementary Figure 7A displays the minimum free energy plotted against the HMM model 37 
order. This free energy, functioning as a statistical metric, undergoes minimization in the 38 
Bayesian optimization process, approximating the model evidence. It encapsulates two crucial 39 
factors: the model's alignment with the data and its complexity, assessed by its deviation from 40 
the prior distribution. A lower value of free energy indicates a better model. The first negative 41 
peak is observed at K = 21. 42 
 43 
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To provide insights into the temporal aspects, we defined fractional occupancy as the proportion 1 
of time in which an HMM state was active. In Supplementary Figure 7B (and C), we present 2 
the evolution of maximum (median) fractional occupancy across HMM states as a function of 3 
the model order. We observe a rapid decline in this curve for low values of K, suggesting that, 4 
as anticipated, the contribution of each HMM state to the total recording time decreased with an 5 
increasing number of states. However, this trend stabilizes at approximately K = 21. This 6 
phenomenon is also mirrored in the development of the mean Lifetime of HMM state, which 7 
exhibits a similar stabilization pattern at around K = 21, as indicated in Supplementary Figure 8 
7E.  9 
 10 
To assess the relationship between the fMRI-based HMM states and PSG-based sleep scoring, 11 
we conducted a multivariate analysis of variance (MANOVA). The MATLAB function manova1 12 
was employed to compute Wilk's Λ, which provides insights into how effectively the K HMM 13 
state timecourses can be categorized according to sleep scoring (the lower the better), as 14 
depicted in Supplementary Figure 7D. There is a local minimum at K = 21. 15 
 16 
Taken together, we chose the model order K = 21 as the number of HMM states. It should be 17 
noted that free energy is weighted most among those five model evaluation statistics.  18 
 19 
Analysis and visualization of HMM transitions. The transition probability matrix, a 20 
fundamental element explicitly modeled by HMM, exhibited a discernible structure characterized 21 
by subnetworks of HMM states that displayed more frequent transitions among themselves than 22 
to states external to their respective subnetworks. Essentially, this transition matrix could be 23 
viewed as a directed graph marked by a modular organization. This characteristic was 24 
effectively demonstrated by applying the transition matrix (depicted in Figure 3) to a modularity 25 
analysis. This modular analysis was performed using MATLAB functions sourced from the Brain 26 
Connectivity Toolbox (https://sites.google.com/site/bctnet/Home) (Rubinov and Sporns, 2010), 27 
which relies on Newman's spectral community detection method (Leicht and Newman, 2008). 28 
 29 
Visualizing mean fMRI activation maps and FC patterns of HMM states. The mean 30 
distributions and covariance matrices specific to each state were subsequently projected back 31 
onto the MNI space utilizing the mixing matrix derived from the PCA. We generated mean fMRI 32 
activation maps and FC patterns for every HMM state relative to the baseline averaged over all 33 
HMM states. For FC patterns, within- or between-network connectivities were calculated as the 34 
average Fisher-transformed functional connectivity between each pair of ROIs within or 35 
between networks. For visualization purposes, we grouped 300 ROIs into 14 networks based on 36 
the Seitzman Atlas (Seitzman et al., 2019). In addition, we assigned subcortical and cerebellar 37 
regions to the additional four Networks: Posterior Hippocampus (pHIP, anterior hippocampus is 38 
included in MTL network), Basal Ganglia (BG), Thalamus (THAL), and Cerebellum (CB). Hence, 39 
a total of 18 networks were used.  40 
 41 
Visualizing state timecourse of HMM states and its associations with PSG stages, PPG 42 
amplitude, and Respiratory signals. Two example runs have been shown in Supplementary 43 
Figures 8 and 9. There two examples showed that how HMM state timecourse (top panel) 44 
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contained fine-grained information compared to the tranditiaonal PSG-based sleep stages 1 
(second panel) and also associated with PPG (third panel) and Respiratory signals (last panel).   2 
 3 

  4 
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