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Abstract

The potential value of large scale datasets is constrained by the ubiq-
uitous problem of missing data, arising in either a structured or unstruc-
tured fashion. While there is considerable work on imputation methods,
much is focused on small-scale datasets with just tens of variables. When
imputation methods are proposed for large scale data, one limitation is
the simplicity of existing evaluation methods. Specifically, most evalua-
tions create synthetic data with only a simple, unstructured missing data
mechanism, and do not resemble the missing data patterns found in real
data. For example, in UK Biobank missing data tends to appear in blocks,
because non-participation in one of the sub-studies leads to missingness
for all of the sub-study variables.
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1 Introduction

Missing data is common in epidemiological and health data research and presents
formidable challenges for many analytical approaches. The causes of missing
data vary from being inherent to the study design, to elective non-participation,
to faults in measurement etc. Much work has therefore been devoted to evaluat-
ing the performance of methods for handling missing data. The most common
approaches to comparing imputation methods include simulating data and in-
ducing missingness using a-priori chosen mechanisms1,2. Alternatively, artificial
missingness is induced on real, complete data3–5 or real missingness patterns
are imposed on simulated data6. Simulation studies of this kind usually rely on
quite restrictive assumptions that might not be reflective of large scale epidemi-
ological cohorts such as UK Biobank (UKB). For example, while some studies
induce missingness in an unstructured manner1,4, in UKB missing data caused
by non-participation in a sub-study/questionnaire comes in “blocks”. Specifi-
cally, if a subset of participants do not participate in an extension of the core
study, then all of these subjects will have missing entries for the variables of this
extension, and (when the rows and columns of the subjects-by-variables matrix
are suitably reordered) this will form a solid block of missing data. Since UKB
and similar datasets consist of many different sub-studies and questionnaires,
this is a crucial feature to consider when evaluating the performance of impu-
tation methods.
While there has been work done on the evaluation of existing methods on data
with structured missingness and the development of new methods for handling
such data, it has been common to use a non data-driven method for inducing
structured missingness2,7,8 or use real missingness patterns imposed on simu-
lated data6. Assuming that the structured missingness is Missing Completely
at Random (MCAR) is especially problematic in the case where it is created by
non-participation, since we know that participants often are disproportionately
healthy9, meaning that the data is not likely to be MCAR. Our aim is therefore
to define a method of generating synthetic data which has the same properties
as a given medical data set. We want the pattern to satisfy the following three
criteria:

1. There is structured missingness10, blocks of missingness caused by non-
participation in sub-studies, as well as unstructured missingness that is
not in blocks and is attributable to any other cause.

2. There is an association between inter-variable correlation and inter-variable
missingness similarity, typically where tightly correlated variables are more
likely to be jointly missing.

3. Missingness is informative in the sense of MAR (Missing at Random),
where there is a relationship between missingness in a given variable and
the observed elements of other variables.

With our framework for simulating such synthetic data, we evaluate the per-
formance of several imputation methods. We are motivated by associations

2



between the brain imaging variables with health, demographic, behavioural and
lifestyle variables in UK Biobank. Thus we consider the subset of ≈ 40 000 sub-
jects with imaging derived phenotype (IDP) data, and a collection of ≈ 20 000
non-Imaging Derived Phenotypes (nIDPs) variables; these nIDP variables are
a mixture of continuous and binary variables (some of the binary variables are
1-hot encoding of categorical variables).

2 Methods

2.1 Terminology

Let n and d be the number of subjects and variables respectively, X be our n×d
dataset and M be the n × d missingness matrix where Mij = 1 if variable j is
missing for subject i and Mij = 0 if it is not missing. The following definitions
and notation are central to our work:

1. Variable-wise missingness pattern. For any variable j = 1, 2, ..., d, the
variable-wise missingness pattern for variable j ismv

j = (M1j ,M2j , ...,Mnj) ∈
{0, 1}n.

2. Subject-wise missingness pattern. For any subject i = 1, 2, ..., n, the
subject-wise missingness pattern for subject i isms

i = (Mi1,Mi2, ...,Mid) ∈
{0, 1}d.

3. Variable-wise missingness distance. For any two variables j and j′,
the variable-wise missingness distance between them is the proportion of
discordant missingness indicators

Dv
jj′ =

1

n

n∑
k=1

1 {Mkj ̸= Mkj′} ,

where Dv = Dv
jj′ is the d× d variable-wise missingness distance matrix.

4. Subject-wise missingness distance. For any two subjects i and i′ the
subject-wise missingness distance between them is likewise

Ds
ii′ =

1

d

d∑
k=1

1 {Mik ̸= Mi′k} ,

where Ds is the n× n subject-wise missingness distance matrix.

5. Structured missingness. We call missingness that is caused by non-
participation in a sub-study/questionnaire structured missingness, result-
ing in a subset of subjects having missing data for a set of variables. This
is also sometimes called block-wise missingness, as when subjects and vari-
ables are suitably reordered, this will result in solid blocks of missing data
in the data matrix.
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6. Unstructured missingness. We call missingness that is not caused by
non-participation in a study/questionnaire unstructured missingness. This
type of missingness will not induce any sort of blocks of missingness.

We now define the stochastic mechanisms that can give rise to missing data.
Let x be a d-dimensional random vector drawn from the same distribution as
the data in our data set and m be its corresponding subject-wise missingness
pattern. Let further xobs(m) and xmiss(m) be the observed and unobserved parts
of the random vector x respectively. We follow the terms in Rubin (1976) for
different types of missingness:

• Missing Completely at Random (MCAR)

P(m|x) = P(m).

This means that the missingness mask is completely independent from
underlying data.

• Missing at Random (MAR)

P(m|x) = P(m|xobs(m)).

This means that there exists some dependence between the missingness
mask and the underlying data, but that this relationship can be described
using only observed data, i.e., the relationship between m and x is de-
termined exclusively by the observed part xobs(m). For example, this can
mean that there exists a group of variables with no missingness which
determine the missingness mask m.

• Missing Not at Random (MNAR)

P(m|x) ̸= P(m|xobs(m)).

For this type of missingness, the relationship between the data and the
missingness requires knowledge of underlying data. This is the most diffi-
cult setting to handle, assuming no prior knowledge of the mechanism by
which missingness is induced, since it has been shown that for any MNAR
model explaining missing data in a given data set, there exists an MAR
model with equal evidence11. In other words, there can be no theoreti-
cal guarantees of correctness for MNAR models explaining missing data
barring direct knowledge of the missingness mechanism.

Characterising types of missingness is crucial to our work since many meth-
ods of handling missing data, most notably Multivariate Imputation by Chained
Equations (MICE), have theoretical guarantees under MCAR and MAR12,
while MNAR requires additional assumptions13.
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2.2 Parameters of the Generative Model

We assume that our data consists of C different sub-studies, where study c = 0 is
assumed to be a baseline study with no missingness while studies c = 1, ..., C−1
are follow up substudies with both structured and unstructured missingness.
The following parameters define our generative model:

• {ρ}c,c′ , the distribution of between-variable correlations for all pairs of

clusters c, c′. We assume a mixed data generative model14, where data
arise from a multivariate normal distribution with zero means and unit
variances: for continuous variables these values are directly observed, while
for binary variables the normal variate is latent and the data is obtained
by thresholding continuous variables to 0/1. Therefore, {ρ}c,c′ represents
the correlation distribution of the underlying data prior to thresholding.

• πc the rate of structured missingness for cluster c.

• (αc, βc), parameters governing the rate of unstructured missingness for
each variable. We assume that the rate of unstructured missingness pusj is
drawn from Beta(αc, βc) if feature j belongs to sub-study c.

• Σcore. We assume that dcore variables from the baseline study c = 0
determine all structured missingness through a logistic model. Σcore is the
correlation matrix of these core variables. The core variables are assumed
to all be continuous.

• AUCc, the Area Under the Curve (AUC) score of the logistic model de-
termining structured missingness for sub-study c.

2.3 Estimating Parameters

We estimate the parameters of the model using the following procedure, also
detailed in the flowchart in Figure 1.

1. Our C sub-studies are identified using hierarchical agglomerative complete
linkage clustering15.

2. The densities {ρ}c,c′ are estimated using a histogram for each pair of
clusters c, c′.

3. We define a subject i to be structurally missing for a sub-study c if at least
90% of the variables from c are missing for subject i. This will give us the
vectors bs

c ∈ {0, 1}n where bs
c,i = 1 if subject i is structurally missing for

sub-study c. This result also directly gives us πc, i.e., the probability of a
subject having structured missingness for cluster c.

4. Having identified all structured missingness, we can estimate (αc, βc) using
the method of moments on the remaining, unstructured missingness.
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Figure 1: Flow chart of the data analysis pipeline.

5. We use LASSO Logistic Regression (LASSO-LR)16 to simultaneously iden-
tify the core variables that determine structured missingness and AUCc,
by fitting C − 1 penalised logistic regression models that use the baseline
study data X0 as predictors and the subject-wise structured missingness
vectors bs

c as outcomes. Specifically, AUCc is estimated using 5-fold cross
validation. Note that the core variables are cluster specific and may or
may not overlap for different clusters. We then estimate Σcore, the corre-
lation matrix of the core variables for all substudies. The penalty term λc

for each LASSO models can be chosen in multiple appropriate ways (see
subsection 2.4.1).

2.4 Generating Synthetic Data

The data is generated using a step-wise procedure as seen in Figure 2. Since
all continuous variables have unit variance correlation matrices and covariance
matrices of continuous data are the same.

1. Using Σcore, we simulate the cluster specific core variables {X∗
core}c for

clusters c = 1, ..., C − 1, by drawing the full core variable data matrix
X∗

core from N (0,Σcore).
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Figure 2: Flow chart of the synthetic data generation pipeline.

2. Using a binary search procedure, we determine intercepts and coefficients
of C−1 logistic models determining structured missingness, with {X∗

core}c
as covariates, such that the model’s AUC score and rate of positive cases
will match AUCc and πc. All the coefficients of the logistic models are
assumed to be equal. Using these models, we generate synthetic subject-
wise structured missingness vectors bs∗

c .

3. We generate the rates of unstructured missingness pus∗j by drawing them
independently from Beta(αc, βc) where variable j is in sub-study c. Un-
structured missingness is assumed to be MCAR and is induced for each
subject i and variable j with probability pus∗j . By combining the gener-
ated structured and unstructured missingness, we obtain an n×d synthetic
missingness indicator matrix M∗.

4. We simulate the full d × d correlation matrix Σ∗ by drawing its entries
from {ρ}c,c′ and, if necessary, projecting it to the nearest positive definite

correlation matrix using Higham’s algorithm17.

5. Having the complete correlation matrix, we generate the rest of the data
X∗, conditioned on the already simulated core variable data X∗

core. To
allow for binary variables, we threshold a subset of variables to become
binary, corresponding to the same number of binary variables in each
cluster.

6. Finally the synthetic missingness mask M∗ is imposed upon X∗ to obtain
the corresponding synthetic data set with missingness X∗

miss.

This procedure generates synthetic datasets which satisfy the key criteria
outlined in the introduction. Crucially, we have access to the true mean vector
and covariance matrix, as well as the underlying data obscured by missingness.
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2.4.1 Calibrating the Predictability of Missingness

The choice of penalty term λc for each LASSO-LR model that predicts struc-
tured missingness can most easily be made by selecting the value of λc which
minimises validation loss. This is, however, not always the option which is most
faithful to the assumptions of our generative model. Since our generative model
assumes that all core variables have equal importance in predicting structured
missingness, we want to choose a value of λc which will minimise the number of
core variables of low predictive importance, while having a validation loss that
is close to that of the optimal value. This is an inevitably arbitrary feature of
our generative model and we choose to select a reasonable value of λc through
trial and error.

2.5 Simulation Study

In order to demonstrate the use of our generative model, we will conduct a
simulation study on synthetic data mimicking the UK Biobank Brain nIDPs to
evaluate the performance of three commonly used imputation methods on this
data set. Our study will test the accuracy of imputation as measured by Mean
Squared Error (MSE) for continuous variables and Balanced Accuracy (BA)
for binary variables over B = 20 synthetically generated datasets. Addition-
ally, to illustrate the difficulty of imputing data with structured missingness,
we will perform the same simulation study on copies of the synthetic datasets
where missingness has been induced in an MCAR and completely unstructured
manner. The data in each sub-study is set to be missing using independent
Bernoulli variables with probability equal to the total rate of missingness for
the sub-study.
The first imputation method is mean imputation, which will serve as our bench-
mark method. The second is the matrix completion method SoftImpute18,
which assumes that there exists a low rank approximation of the data set. This
method has a tuning parameter, the value of the low rank, which we vary as
5%, 15% and 30% of the full matrix rank. Both the mean imputation and Soft-
Impute methods will be binarised to impute binary variables using 0.5 as the
threshold, so imputed values greater than or equal to 0.5 will be transformed to
1, while the rest will be transformed to 0. The last method is called iterative
imputation19 or ICE, Iterative Imputation by Chained Equations3, which uses
the same iterative procedure as MICE, but does not include randomness in the
imputed values and only creates a single imputed data set. By testing the ac-
curacy of iterative imputation we are effectively evaluating the accuracy of the
“signal” component of the MICE imputation method. Additionally, MICE is
impractical to use in this high dimensional setting with respect to memory use
and computational time since it requires a large number of multiply imputed
data sets. We chose to impute continuous values using Bayesian Ridge Regres-
sion19 and binary values using Logistic Regression with a Ridge penalty. In
high dimensional setting, iterative imputation requires us to choose a subset of
k << d variables that will be used to impute each variable j. These variables
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are normally set to be the k variables with highest absolute correlation with
j 19–21, or select the k variables with the most favorable missingness patterns20;
all else being equal, we favour variables for imputing j which are observed the
most often in rows where j is missing and therefore select variables using the
rows of the matrix

V = MT (1n×d −M), (1)

where Vjj′ is the number of times j′ is observed when j is missing.
We propose a third selection method which utilises correlation and missing-
ness jointly, while being applicable to mixed data. It calculates a score Sjj′

which is proportional to the maximum expected reduction imputation error
(MSE for continuous and misclassification rate for binary variables) under the
assumption of MCAR and under the generative model described in14 for joint
continuous and binary data, i.e., an underlying multivariate normal distribution
with thresholding for binary variables.

• j and j′ are both continuous

Sjj′ = Vjj′ρ
2,

where ρ is the Pearson correlation between variables j and j′.

• j is continuous and j′ is binary

Sjj′ = Vjj′ρ
2,

where ρ is the Pearson correlation between variables j and j′.

• j is binary and j′ is continuous

Sjj′ = Vjj′

[∫ D/ρb

−∞
ϕ(x′)Φ

(
D − ρbx

′√
1− ρ2b

)
dx′+

∫ ∞

D/ρb

ϕ(x′)

(
1− Φ

(
D − ρbx

′√
1− ρ2b

))
dx′ −max {p, 1− p}

]
if ρb > 0 and

Sjj′ = Vjj′

[∫ D/ρb

−∞
ϕ(x′)

(
1− Φ

(
D − ρbx

′√
1− ρ2b

))
dx′+

∫ ∞

D/ρb

ϕ(x′)Φ

(
D − ρbx

′√
1− ρ2b

)
dx′ −max {p, 1− p}

]

if ρb < 0, where ϕ and Φ are the the probability density function and
cumulative distribution function of the standard-normal distribution, ρ is
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the Pearson correlation between variables j and j′, p is the rate of positive
cases for variable j, D = Φ−1(p) and

ρb = ρ

√
p(1− p)

ϕ(D)
.

D is the threshold of the underlying standard-normal variable that de-
termines the binary value of j and ρb is the correlation between this un-
derlying variable and j′. The reduction in misclassification loss can be
calculated directly using these quantities by assuming that we predict 0/1
depending on whether the median of the latent variable conditioned on
the value of j′ is greater than D or not.

• j and j′ are both binary

Sjj′ = Vjj′
[
p′ max {P(x = 1|x′ = 1), 1− P(x = 1|x′ = 1)}+

(1− p′)max {P(x = 1|x′ = 0), 1− P(x = 1|x′ = 0)} −max {p, 1− p}
]
,

where p and p′ are the rates of positive cases for p and p′ respectively.
Here, the reduction in misclassification loss is calculated directly from the
2×2 contingency table of j and j′, since we know the most likely outcome
of variable j given the value of j′. This contingency table is calculated
using p, p′ and ρ.

A formal proof of these results can be found in the supplementary material.
We will vary the tuning parameter k to be 10, 50 and 150.

2.6 Illustrative Example: Variable Selection for Predict-
ing Total Grey Matter Volume

In order to demonstrate the validity of the conclusions drawn from our simu-
lation study, we apply our imputation methods to an analytical task on real
data and see if there is agreement between the results of the analysis and the
conclusions drawn from the simulation study. We chose the task of selecting 15
nIDPs for an Ordinary Least Squares (OLS) model predicting log-transformed
normalised total grey matter volume. The total pool to select from is ≈ 15 000
nIDPs (nIDPs with 0 variance or missingness above 40% were excluded). Impu-
tation is used here as a pre-processing step and LASSO-LR is used for variable
selection. The outcome, i.e., the 15 variables that are selected will vary depend-
ing on the imputation method. We compare four different approaches: using
only complete varibles, mean imputation, SoftImpute and iterative imputation.
The tuning parameters for SoftImpute and iterative imputation are chosen based
on their performance in the simulation study. The four approaches are evalu-
ated by the relevance of the 15 selected variables, as measured by the pooled
R2 estimates of each OLS model. To ensure fair assessment of the R2 scores
irrespective of missingness in the selected variables, we use the mice package
in R13 to create m = 100 multiply imputed data sets of all selected variables
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Table 1: Table of cluster sizes.
Cluster # of Binary Variables # of Continuous Variables Total # of Variables

c = 0 13458 1227 14685
c = 1 371 6434 6805
c = 2 131 2012 2143
c = 3 3 235 238

and pool the R2 scores and their standard error estimates for each OLS model
according to “Rubin’s rules”22. We use the following estimator of this standard
error23:

se(R2) =

√
4R2(1−R2)2(n− p− 1)2

(n2 − 1)(n+ 3)
,

where n is the number of observations and p the number of variables.
We also ensure that the baseline variables age squared, sex and Townsend

deprivation index are included in the OLS model as potential confounding vari-
ables.

3 Results

3.1 Analysis Pipeline

As seen in subsection 2.3, we need to select a value for the number of substud-
ies/clusters C as a parameter of our analysis pipeline. This choice is jointly
driven by the data itself as well as the need to select a small number of clus-
ters/substudies to allow us to clearly illustrate our methodology. Figure 3 shows
the dendrogram of the 100 last agglomerations in the hierarchical clustering of
nIDPs by variable-wise missingness pattern. It can be seen from this den-
drogram that C = 4 will give us clusters which have a high between-cluster
missingness distance relative to within-cluster distance. The choice of C = 4
clusters also gives us reasonably sized clusters for our analysis, as seen in Table
1.

The share of each nIDP type by cluster is shown in Figure 4. Cluster c = 0
contains almost exclusively health and medical related nIDPs, cluster c = 2
contains mostly lifestyle and environment related variables, cluster c = 3 almost
exclusively contains cognitive phenotype variables and cluster c = 1 contains a
mix of the remaining types of variables. This results shows that nIDPs of the
same type tend to have similar variable-wise missingness patterns.

Figure 5 plots the histograms of the proportions of variable-wise missing
data, i.e., fraction of subjects missing for each variable in a cluster. As we can
see, the cluster c = 0, the cluster that contains mostly health- and medical
related variables, has almost no missingness. This is an expected result, as
health records usually either contain too much missingness to be included in
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Figure 3: Dendrogram of the 100 last agglomerations in the hierarchical clus-
tering of nIDPs by variable-wise missingness pattern, where distance between
merged clusters (y-axis) is the maximal variable-wise missingness distance be-
tween agglomerated clusters. We determine that C = 4 clusters/substudies is
an appropriate choice for illustrating the workings of our method since it gives
us reasonably sized clusters with a high between-cluster distance relative to
within-cluster distance.

the first place or they have very little missingness as absence of data indicates
abscence of recorded disease or diagnosis. Clusters c = 2, 3 have intermediate
rates of missingness with cluster c = 3 having lower rates of missingness as well
as a lower variability of rates of missingness, while c = 1 has very high rates of
missingness. For this reason, we will exclude cluster c = 1 from our generative
model, as its variables have too high rates of missingness to be interesting to
use for imputation.

Figure 6 displays the subject-wise missingness histograms, the proportion of
cluster-c variables missing for a given subject. The red line in each plot signifies
the 90% threshold for structured missingness, meaning that subjects for which
90% or more of the features assigned to cluster c are missing are considered
to have structured missingness for the variables in cluster c. We can see that
cluster c = 3 has a much clearer separation between structured and unstructured
missingness, whereas it is less clear for clusters c = 1, 2, likely due to higher rates
of unstructured missingness as well as our approximation of C = 4 leading to
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Figure 4: Bar plots detailing the proportion of nIDP variable types in each
cluster. Cluster c = 0 contains almost exclusively health and medical related
nIDPs, cluster c = 2 contains mostly lifestyle and environment related variables,
cluster c = 3 almost exclusively contains cognitive phenotype variables and
cluster c = 1 contains a mix of the remaining types of variables. This shows
that nIDPs of the same type tend to have similar variable-wise missingness
patterns.

different clusters being grouped together.
As discussed in subsection 2.4.1, the penalty terms λc need to be carefully

chosen to not violate the assumptions of our generative model. Manual tuning
arrived at a value of λc = exp(6) for both clusters c = 2, 3 which minimised both
the total number of core variables as well as the proportion of binary variables,
while having validation AUC scores close to those of the optimal values, as
shown in Tables 2 and 3.

The final results of the data analysis are summarised in Table 4. These
results indicate that clusters c = 2, 3 have similar rates of structured missing-
ness, while cluster c = 2 has a much higher rate of unstructured missingness, as
indicated by the values of αc and βc. It is also apparent that the variables in
cluster c = 3 have a more informative type of structured missingness as we can
see by the higher value of AUCc.
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Table 2: Table detailing the validation AUC for predicting structured missing-
ness using variables from cluster c = 0 and number of binary and continuous
variables selected using LASSO Logistic Regression (LASSO-LR) for optimal
values of λc.

Cluster AUCc # of Binary Variables # of Continuous Variables dcore,c

c = 2 0.72 48 575 623
c = 3 0.90 271 948 1219

Table 3: Table detailing the validation AUC for predicting structured missing-
ness using variables from cluster c = 0 and number of binary and continuous
variables selected using LASSO logistic regression using λc = exp(6) for both
clusters c = 2, 3.

Cluster AUCc # of Binary Variables # of Continuous Variables dcore,c

c = 2 0.71 5 62 67
c = 3 0.86 5 78 83

Table 4: Table of results summarising the data analysis step of the method.
These results indicate that clusters c = 2, 3 have similar rates of structured
missingness, while cluster c = 2 has a much higher rate of unstructured miss-
ingness, as indicated by the values of αc and βc. It is also apparent that the
variables in cluster c = 3 have a more informative type of structured missingness
as we can see by the values of AUCc.

Cluster AUCc dcore,c πc αc βc

c = 2 0.71 67 0.26 6.0 4.6
c = 3 0.86 83 0.29 0.44 4.4
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Figure 5: Histograms of the proportions of missing data for variables in each
cluster. Each entry in the histogram for cluster c is the proportion of missing
data for a single variable belonging to cluster c. Cluster c = 0, i.e., the cluster
that contains mostly health- and medical related variables, has almost no miss-
ingness. Clusters c = 2, 3 have intermediate rates of missingness with cluster
c = 3 having lower rates of missingness as well as a lower variability in the same,
while c = 1 has very high rates of missingness.

3.2 Simulation Study

Figure 7 plots the imputation accuracy by variable for datasets using the gener-
ative model as well as the unstructured equivalent described in sub-section 2.5.
The red line in each violin plot is the median of the best performing method in
that comparison, i.e., the lowest median MSE and the highest median BA. To
interpret the results, it should be noted that the continuous variables of the gen-
erative model all have zero mean and unit variance. Iterative imputation that
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Figure 6: Histograms detailing the proportion of variables assigned to cluster c
that are missing, by subject. The red line in each plot signifies the 90% thresh-
old for structured missingness, meaning that subjects for which 90% or more of
the features assigned to cluster c are missing are considered to have structured
missingness for the variables in cluster c. We can see that the cluster c = 3 has
a much clearer separation between structured and unstructured missingness,
whereas it is less clear for clusters c = 1, 2, likely due to higher rates of unstruc-
tured missingness as well as our approximation of C = 4 leading to different
clusters being grouped together.

uses Pearson correlation as its criterion for variable selection is the best perform-
ing method overall. It is also notable that the SoftImpute performs poorly for
binary data and considerably worse than the iterative imputation methods for
continuous data. When comparing the performance between generative model
versus completely unstructured missing data, we can see that performance is
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Figure 7: Violin plots of the imputation accuracy by variable. The red line in
each violin plot is the median of the best performing method in that compar-
ison, i.e., the lowest median MSE and the highest median BA. Since continu-
ous data is standardised, the MSE scores correspond to 1 minus the variance
explained by prediction. It is obvious that iterative imputation that uses Pear-
son correlation as its criterion for selecting k variables is the best performing
method overall. It is also notable that SoftImpute performs poorly for binary
data. When comparing the performance between generative model versus com-
pletely unstructured missing data, we can see that performance is better for the
completely unstructured case, for both continuous and binary variables. This
difference is particularly stark for cluster c = 3, where there is a lot of structured
missingness and very little unstructured missingness, highlighting the difficulty
of imputation in this setting.
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Table 5: R2 scores for the OLS models using the selected variables along with the
number of variables in the model that ended up being statistically significant.
The results show a modest difference between the three imputation methods,
with iterative imputation having the most statistically significant variables and
the best R2 score. The results when using only complete variables are worse with
a considerably lower R2 score as well as fewer variables ending up statistically
significant.

Method R2 of OLS se(R2)

#Statistically
Significant
in OLS

# Binary vars.
selected

Rate of missingness
in selected vars.

Complete Variables 0.475 0.0034 11/15 12/15 0.00
Mean 0.510 0.0033 13/15 1/15 0.09
SoftImpute 0.499 0.0034 11/15 1/15 0.11
Iterative Imputation 0.516 0.0033 14/15 2/15 0.10

better for the completely unstructured case, for both continuous and binary
variables. This difference is particularly stark for cluster c = 3, where there is
a lot of structured missingness and very little unstructured missingness, high-
lighting the difficulty of imputation in this setting. Finally, it should be noted
that we are rarely able to explain more than 20% of variance in the missing
values and that this could mean that the choice of imputation method will not
greatly impact the outcome of many analytical tasks, as the modest accuracy
of imputation may not be enough to greatly alter the final outcome.

3.3 Illustrative Example

Table 5 lists the variance explained for the OLS model using the selected vari-
ables along with the number of variables in the model that ended up being
statistically significant. The results show a modest difference between the three
imputation methods, with iterative imputation having the most statistically sig-
nificant variables and the best R2 score. The results when using only complete
variables are worse with a considerably lower R2 score as well as fewer vari-
ables ending up statistically significant. We also see that the complete variables
method selected many more binary variables and this is because the complete
variables are mostly health record data, i.e., data assigned to cluster c = 0,
which is disproportionately binary as seen in Table 1. Meanwhile, the results
for iterative imputation are the best, having the highest R2 score as well as the
highest number of statistically significant variables. These results align well with
our simulation study; a small difference in the final outcome of the analytical
task for different methods caused due to the difficulty of imputing structurally
missing data, but with iterative imputation clearly being the best alternative.
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4 Discussion

We have proposed a method for generating large-scale data with complex pat-
terns of missing data that make imputation difficult. In particular, our data-
driven simulation framework allows for highly informative missingness and joint
missingness for variables that are strongly correlated. This ability to mimic the
properties of large scale epidemiological datasets makes our method useful for
gaining insight into the performance of handling missing data for different ana-
lytical tasks. There are, however, limitations to our model which are important
to note and represent potential future work on this topic. Our model assumes
multivariate normality for all continuous features, which limits the generalis-
ability of any conclusions drawn from simulation studies of analytical methods
that are sensitive to non-gaussianity or strong outliers. In such scenarios, it is
possible that conclusions drawn using our generative model would unduly favour
linear methods over more complicated black-box methods that would fare better
on real, non-Gaussian data. This could be solved by parameterising the model
differently, allowing for more flexibility on the underlying multivariate distribu-
tion, or by using non-parametric methods.
Another potential limitation of our generative model is that we assume that
the correlation structure of the data closely follows the missingness structure.
This is because we assume that for any pair of clusters c, c′, the correlation
between pairs of variables in c and c′ are drawn independently from some dis-
tribution {ρ}c,c′ , i.e., we assume that there is no further covariance structure
within or between sub-studies. We have found this to be approximately true for
the nIDPs that we have been working with, but this might not be the case for
other datasets. This could be solved by modelling missingness and correlation
structure jointly in a way which allows for further complexity inside sub-studies.
In this paper we chose to use C = 4 clusters of variables as an approximation of
reality in order to be able to inspect the properties of these clusters separately.
In all likelihood, the true number of substudies is higher, and more represen-
tative results could be obtained by choosing a higher figure. We deemed it
necessary to use a lower number in order to demonstrate the inner workings of
our method. When allowing C to be higher, we found C = 15 clusters with 100
or more variables present in the data set. These clusters all had a very clear
separation between the structured and unstructured missingness, which bolsters
our hypothesis that missingness in UKB data can be effectively modelled as we
have suggested.

The overall conclusion that can be drawn from the results of our simulation
study as applied to nIDPs from the UKB Brain Imaging cohort is that imputa-
tion using commonly used methods for high dimensional imputation problems
is incredibly difficult and might yield similar results as using mean imputation.
This was backed up by the results from the illustrative example. Even though
the topic of developing such methods is considered to be beyond the scope of
this paper, the results do not indicate that the development of such methods
is a fruitless exercise, as the methods that were included in the paper are not
specifically tailor made to handle structured missingness. This means that fu-
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ture work on this topic will include the development of suitable methods for
handling missing data in this difficult setting.

Supplementary Material

All code can be found in the following GitHub repository: https://github.

com/lavrad99/Generative_Model_Missing_Data/
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