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Abstract 

 

Background 

Four hypertension-mediated left ventricular hypertrophy (LVH) phenotypes have been reported using 

cardiac magnetic resonance (CMR): normal LV, LV remodeling, eccentric and concentric LVH, with 

varying prognostic implications. The electrocardiogram (ECG) is routinely used to detect LVH, 

however its capacity to differentiate between LVH phenotypes is unknown. This study aimed to classify 

hypertension-mediated LVH from the ECG using machine learning (ML) and test for associations of 

ECG-predicted phenotypes with incident cardiovascular outcomes. 

 

Methods 

ECG biomarkers were extracted from the 12-lead ECG of 20,439 hypertensives in UK Biobank (UKB). 

Classification models integrating ECG and clinical variables were built using logistic regression, 

support vector machine (SVM) and random forest. The models were trained in 80% of the participants, 

and the remaining 20% formed the test set. External validation was sought in 877 hypertensives from 

the Study of Health in Pomerania (SHIP). In the UKB test set, we tested for associations between ECG-

predicted LVH phenotypes and incident major adverse cardiovascular events (MACE) and heart failure. 

 

Results 

Among UKB participants 19,408 had normal LV, 758 LV remodeling, 181 eccentric and 92 concentric 

LVH. Classification performance of the three models was comparable, with SVM having a slightly 

superior performance (accuracy 0.79 ,sensitivity 0.59, specificity 0.87, AUC 0.69) and similar results 

observed in SHIP. There was superior prediction of eccentric LVH in both cohorts. In the UKB test set, 

ECG-predicted eccentric LVH was associated with heart failure (HR 3.42, CI 1.06-9.86). 

 

Conclusions 

ECG-based ML classifiers represent a potentially accessible screening strategy for the early detection 

of hypertension-mediated LVH phenotypes.  
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Graphical abstract 
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Non-standard Abbreviations and Acronyms 

 

AI Artificial intelligence 

AUC Area under the curve 

BP Blood pressure 

CHD Coronary heart disease 

CI Confidence interval 

CMR Cardiac magnetic resonance imaging 

CV Cardiovascular 

CVD Cardiovascular disease 

DBP Diastolic blood pressure 

ECG Electrocardiogram 

HCM Hypertrophic cardiomyopathy 

LR Logistic Regression 

LV Left ventricle 

LVH Left ventricular hypertrophy 

MICE Multivariate Imputation by Chained Equations 

ML Machine learning 

mmHg Millimetre of mercury 

MRI Magnetic resonance imaging 

P P-value 

RF Random forest 

ROC Receiver operator curves 

SBP Systolic blood pressure 

SHIP Study of Health in Pomerania 

SVM Support vector machine 

UKB UK Biobank 
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Introduction 

Hypertension is the most common cause of left ventricular hypertrophy (LVH), and both are strong 

predictors of cardiovascular (CV) morbidity and mortality.1,2 The diagnosis of hypertension-mediated 

LVH has relied on cardiac imaging, such as echocardiography and cardiac magnetic resonance 

(CMR).3,4 Using CMR imaging, four distinct hypertension-mediated LVH phenotypes have been 

reported: normal left ventricle (LV), LV remodeling, eccentric LVH and concentric LVH.5 The 

spectrum of LVH phenotypes has been shown to have varying prognostic implications, with worse CV 

outcomes reported in eccentric and concentric LVH.6,7 Due to the global burden of hypertension, a cost-

effective approach in detecting LVH phenotypes is required to meet clinical demand. Before the advent 

of CV imaging, the electrocardiogram (ECG) had been used clinically to screen for LVH in 

hypertension.8–10  However, its capacity to detect the four CMR-defined LVH phenotypes is unknown. 

 

Hypertension clinical guidelines endorse using the 12-lead ECG in individuals to screen for LVH.3,4,11 

The ECG is a readily available and low-cost first line diagnostic tool performed on most patients during 

an acute care visit and follow-up of chronic CV conditions. In recent years, the transition to digitised 

ECG in electronic healthcare records has paved opportunities for ECG-based diagnostic and prognostic 

predictions. Moreover, the use of wearable technology and smartphones have increased its accessibility.  

Early detection of hypertension-mediated LVH can enable regular healthcare follow-up, rigorous CV 

risk management and timely initiation of effective blood pressure (BP)-reducing therapies. However, 

accurate reporting of the ECG is challenging for clinicians, and any improvement in automated analysis 

could ensure timely diagnosis and treatment of hypertensive patients with LVH.12–14 A machine learning 

(ML) tool to detect hypertension-mediated LVH phenotypes could reduce the number of unnecessary 

CMR scans, allowing them to be used more efficiently, thus reducing waiting times. This is also of 

clinical significance as the ECG features derived from classifying hypertension-mediated LVH 

phenotypes may be used as surrogate markers to predict clinical outcomes in hypertensives.  

 

This study uses ML techniques to explore the diagnostic and prognostic value of ECG-predicted 

hypertension-mediated LVH phenotypes. We hypothesized that a selection of ECG biomarkers and 
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clinical variables could classify hypertension-mediated LVH phenotypes defined by CMR imaging and 

that these ECG-predicted LVH phenotypes would be associated with incident CV outcomes.  
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Methods 

 

UK Biobank sample selection 

The UK Biobank (UKB) is a large prospective population study where demographics, medication 

history, electronic health records, biomarkers and genomics were collected in half a million participants 

aged 40-69 years when recruited between 2006 and 2010 from across the United Kingdom. The UKB 

imaging study was launched in 2015 with the aim of scanning 20% of the original cohort, that is 100,000 

participants.15 The details of the UKB CMR protocol have been described elsewhere.16 

 

A total of 44,817 participants had completed the UKB imaging study at the time of analysis. Of these, 

37,651 participants had both ECG and CMR data available. Hypertensive participants (N=23,042) were 

identified according to the ‘high normal’ BP grade of ≥130/85mmHg based on the 2018 European 

Society of Cardiology/European Society of Hypertension (ESC/ESH) guideline.3 In UKB, BP readings 

from the imaging visit were analyzed as these were taken on the same day as the CMR study and 12-

lead resting ECG. Each participant had two manual BP readings using a validated automated BP 

monitor or a manual sphygmomanometer. After calculating the average BP values, we adjusted for 

medication use by adding 15 and 10 mmHg to SBP and DBP, respectively, for participants reported to 

be taking BP-lowering medication.17 We further defined hypertension by selecting relevant data fields 

from the UKB data showcase, including hypertension self-reported by participants, formal diagnosis 

from primary care physician and BP medication use. Participants with other causes of LVH (N=2,603) 

were excluded by reviewing exome sequence data for genes implicated in hypertrophic 

cardiomyopathy.18 The remaining hypertensive participants (N=20,439) were categorized into the four 

hypertension-mediated LVH phenotypes using a mass-to-volume ratio. Indexing for body surface area 

was performed using the Mosteller formula.19 The data fields selected from UKB are shown in 

Supplementary Table 1. Figure 1 illustrates the UKB sample selection process.  
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ECG biomarker extraction 

Full 15-second 12-lead ECG signals of each of the 20,739 participants were analyzed semi-

automatically using a custom algorithm written in MATLAB (version 2021a, Mathworks Inc.) to derive 

23 biomarkers (Supplementary Table 2) with a known physiological association with LVH.20 Only the 

independent ECG leads (I, II, V1-6) were analyzed. Butterworth filter (1-45Hz) was applied to attenuate 

baseline wander and high-frequency noise. ECG biomarkers from each independent lead were treated 

as individual features. In addition, global ECG features were calculated as the median value across the 

independent leads. The applied algorithm for extracting ECG biomarkers is detailed elsewhere.21  

 

Ascertainment of clinical variables 

In addition to ECG biomarkers, we also included clinical variables known to be associated with LVH 

(Table 1) in the classification model. Each clinical variable was defined by either a self-reported 

questionnaire or biochemistry results. Participants with serum total cholesterol of ≥5mmol/L and 

Hemoglobin A1c (HbA1c) ≥48 mmol/mol at the baseline visit were considered to have 

hypercholesterolemia and diabetes mellitus, respectively. We corrected total and non-HDL cholesterol 

values for participants on cholesterol-lowering medication by dividing the total cholesterol by 0.73 and 

non-HDL cholesterol by 0.66.22 The presence of tobacco use was ascertained using self-reported 

questionnaires, with smoking status classified categorically as current, previous or never. Alcohol 

consumption was classified as current or never.  

 

Supervised machine learning techniques 

Three supervised ML algorithms were evaluated for classification: logistic regression, support vector 

machine (SVM) and random forest (RF). The algorithms were implemented in MATLAB, and the fit 

multiclass models for SVMs or other classifiers (fitcecoc) function was used to build the logistic 

regression and SVM classifiers.23 The fit ensemble of learners for classification (fitcensemble) was used 

to build the RF classifier.24 In our experiments, the dataset was split into a training set (80%) for learning 

and a test set (20%) for performance evaluation. We applied 10-fold cross-validation to the training set. 

The metrics we used to assess classifier performance in the test set included: accuracy, sensitivity, 
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specificity, precision, F1 score and area under the receiver operator curve (AUC). Further details of the 

models are described previously.21  

 

External validation in Study of Health in Pomerania  

The Study of Health in Pomerania (SHIP) is a population-based study investigating common risk factors 

and subclinical diseases from a random cluster sample drawn from the population of West Pomerania 

in Northeast of Germany.25,26 SHIP consists of two independent cohorts: SHIP-START (recruited 

between 1997 to 2001) and SHIP-TREND (recruited between 2008 to 2012). Study participants for 

both cohorts were sampled from the general adult population aged 20-79 in West Pomerania. This study 

used the second follow-up of SHIP-START (SHIP-START-2) and baseline SHIP-TREND-0 as these 

were the studies with both 12-lead ECG and CMR data. The populations comprised 2,333 participants 

for SHIP-START-2 and 4,420 participants for SHIP-TREND-0.26 A total of 1,474 participants from 

SHIP had both CMR and ECG data. The same definition of hypertension was applied based on BP 

readings, medication use and diagnosis, yielding a total of 877 hypertensives in SHIP. The same ECG 

biomarkers and clinical features as per UKB analysis were extracted. For classification, the whole SHIP 

cohort was treated as a test set. Therefore, down-sampling was not applied. The best-performing ML 

model (SVM) was taken forward for external validation in SHIP.  

 

Associations with cardiovascular outcomes in UK Biobank 

Longitudinal data on clinical outcomes of UKB participants is recorded using linkage to Hospital 

Episode Statistics (HES) and the UK death register.27 All UKB participants consented to be followed 

up. In this study, the primary endpoint was major adverse cardiovascular events (MACE), defined as 

either hospitalization or death due to fatal/non-fatal myocardial infarction, stroke or ventricular 

arrhythmias. Cases were identified using relevant International Classification of Disease, 9th or 10th 

Revision (ICD-9, ICD-10), or Office of Population Censuses and Surveys version 4 (OPCS 4) 

Classification of Interventions and Procedures codes in the health-related records or death register 

(Supplementary Table 3). An additional analysis was performed testing for association with heart 

failure separately. These clinical outcomes were selected due to their association with hypertension 
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from the literature and clinical expertise. The follow-up period was determined by the first appearance 

of ICD-9, ICD-10 or OPSC4 codes in either health record or death register data since the UKB imaging 

visit. Participants with prevalent events at the time of UKB enrolment were excluded from the survival 

analyses. Participants who did not experience an event were censored at death or the end of the follow-

up period (30 November 2022).  

 

Statistical analyses 

Statistical analyses were performed using R version 4.0.3 and RStudio Version 1.3.1093.28 After 

excluding missing or extreme ECG values (outside the range defined by the quartiles +/- 1.5 x 

interquartile range) the Classification And REgression Training (CARET) package in R was used for 

correlation analysis, and highly correlated ECG biomarkers were omitted (correlation coefficient 

threshold of +/- 0.9).29 ECG biomarkers with less than 10% of missing data were imputed using the 

Multivariate Imputation by Chained Equations (MICE) package in R.30 In order to address the 

imbalance in the dataset, down-sampling was applied using the CARET package in the training set to 

match the proportion of participants in the minority LVH group. A chi-squared test was used to rank 

the features in terms of feature importance score.  

 

Descriptive statistics are presented as median (interquartile range) for continuous variables or frequency 

(percentage) for categorical variables. The distribution of continuous data was assessed by visual 

inspection of the histograms and confirmed by the Shapiro-Wilk test. Baseline clinical and ECG 

characteristics of the hypertension-mediated LVH phenotypes were statistically compared with the 

normal LV group. To assess for associations, the ANOVA test was used for continuous data and the 

chi-squared test for categorical data. For all analyses, a two-tailed p-value <0.05 was deemed 

statistically significant.  

 

Associations between the ECG-predicted phenotypes and clinical outcomes were performed in the UKB 

test set (N = 3,066) using multivariable-adjusted Cox proportional hazard regression, setting normal 

LV as the reference group. For each clinical outcome the model was adjusted for age, sex and body 
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mass index. Hazard ratios (HR) were reported with 95% confidence intervals (CI) to derive risk for 

each LVH phenotype compared to the normal LV group. 
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Results 

 

Study population 

The clinical and ECG characteristics of the UKB participants stratified by hypertension-mediated LVH 

phenotypes are presented in Table 1. Among the 20,439 hypertensive participants in UKB, 19,408 

(95.0%)had normal LV, 758 (3.7%) had LV remodeling, 181 (0.9%) eccentric LVH and 92 (0.5%)  

concentric LVH. Overall, the cohort had an average  age of 66 years , and 46% were female. In the total 

hypertensive cohort, the frequency of participants with LVH criteria for Sokolow-Lyon and Cornell 

voltage on the ECG was 2% and 8%, respectively.  

 

Table 2 shows the baseline characteristics of the SHIP validation cohort. In SHIP there were 877 

participants with hypertension, of which 704 (80.3%) had normal LV, 134 (15.3%) LV remodeling, 12 

(1.4%) participants with eccentric LVH and 27 (3.1%) with concentric LVH. The average age was 56 

years , and 39% were female. Overall, the frequency of participants with LVH criteria for Sokolow-

Lyon and Cornell voltage on the ECG was 6% and 9%, respectively. 

 

Machine learning model performance in UK Biobank 

Supplementary Figure 1 shows the ranking of the top 40 features across all ML models using chi-

squared feature selection. The top clinical features were sex and age, and the highest-ranking ECG 

predictors of LVH were ventricular rate and QRS amplitude in V4.  

 

The performance metrics of the supervised ML classifiers (logistic regression, SVM and RF) using both 

ECG and clinical variables in UKB are shown in Table 3. Classification with each method was 

comparable in the test set, with SVM showing the most consistent performance with 0.79 accuracy, 

0.59 sensitivity, 0.87 specificity, 0.78 precision, 0.67 F1 score and AUC 0.69. Using SVM, the 

classification of eccentric LVH (AUC 0.86) and concentric LVH (0.72) was superior to normal LV 

(0.65) and LV remodeling (0.64) phenotypes, as shown in Figure 2. The ECG biomarkers enhanced the 
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model performance of the SVM classifier in UKB, compared to clinical variables alone (AUC values 

of 0.69 and 0.58, respectively), as illustrated in Figure 2. 

 

External validation in Study of Health in Pomerania 

External validation in the SHIP cohort using SVM showed a similar performance to UKB with 0.75 

accuracy, 0.51 sensitivity, 0.85 specificity, 0.63 precision, 0.56 F1 score and 0.65 AUC (Table 3). Akin 

to UKB, the classification of eccentric LVH (AUC 0.76) and concentric LVH (0.66) was superior to 

normal LV (0.55) and LV remodeling (0.63) phenotypes. The ECG biomarkers also enhanced the model 

performance of the SVM classifier in the SHIP cohort, compared to clinical variables alone (AUC 

values of 0.65 and 0.61, respectively, shown in Figure 2). 

 
Association of ECG-predicted LVH phenotypes with CV outcomes 

Figure 3 shows the associations between ECG-predicted hypertension-mediated LVH phenotype using 

SVM and the clinical outcomes MACE and heart failure in the UKB test set (N = 3,066). There was no 

statistically significant association with MACE (Supplemental Table 4), however the hazard ratio of 

heart failure was 3.2 times higher (HR 3.24, CI: 1.06-9.86) in hypertensives with eccentric LVH with 

normal LV set as the reference group (Supplementary Table 4).  

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 23, 2024. ; https://doi.org/10.1101/2024.04.22.24306204doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.22.24306204


 14 

Discussion 

 

In UKB, a combination of ECG biomarkers and clinical variables was able to discriminate between 

hypertension-mediated LVH phenotypes using supervised ML techniques. The ML classifiers had 

similar performances, with slight superiority using SVM. External validation in the SHIP cohort using 

SVM demonstrated the robustness of the model with reproducible results. We observed incremental 

value in using the 12-lead ECG compared to clinical variables alone for hypertension-mediated LVH 

detection. The classification of eccentric LVH and concentric LVH was superior to normal LV and LV 

remodeling phenotypes in both UKB and the SHIP cohort. Furthermore, we observed a strong 

association between the ECG-predicted eccentric LVH group in the UKB test set and heart failure (HR 

3.24, CI: 1.06-9.86), indicating there is potential clinical relevance of the model. 

 

This is the first ML study to classify hypertension-mediated LVH phenotypes from the ECG. 

Ventricular rate and QRS amplitude in the precordial leads were the most influential ECG features in 

the model. The other top ECG predictors of LVH were measurements relating to the QRS complex, 

such as QRS duration, QRS descending slope and Sokolow-Lyon criteria, which are derived from 

amplitude measures of the QRS complex. Change in the QRS complex is a marker of electrical 

remodeling seen in LVH, which has been postulated to be due to the increase in the muscle mass of the 

LV mounting the forces of the LV potential. However, the increased QRS voltage is seen only in a 

minority of LVH cases in both clinical and animal studies, and consequently, voltage criteria suffer 

from a high number of false negative results and low sensitivity.31 In prior work, ECG predictors of 

LVH have suffered low sensitivity, ranging from 15-30%.32 Using a combination of ECG and clinical 

variables, our sensitivity values were higher, with over 50% using SVM, without compromising 

specificity (87% using SVM).  

 

The results across all models were comparable, with SVM demonstrating the best overall model 

performance in classifying hypertension-mediated LVH phenotypes. There is no direct comparative 

study; however, Beneyto and colleagues (2023) also found SVM to be superior in detecting 
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hypertension as the cause of LVH, compared to the decision tree and RF models.33 The authors defined 

LVH as maximal LV wall thickness greater than 12mm in diastole and found that SVM had the optimal 

balance between specificity of 86% and sensitivity of 31%. Beneyto et al used a combination of clinical, 

laboratory and ECG features in their models. They identified systolic BP and the number of anti-

hypertensive medications among the most significant features for classification. However, as ECG 

features were not included, this precludes direct comparison with our study.  

 

We validated our findings in an independent cohort, and the results demonstrated robustness of the ML 

model. Although both cohorts were European, they had differing clinical profiles. Compared to UKB, 

the SHIP cohort was younger (66 years vs 56 years) and had a higher incidence of hypercholesterolemia 

(19% vs 79%). The SHIP cohort is noted to be a ‘high-risk’ population compared to the relatively 

‘healthy’ cohort of UKB. Despite the differing risk profiles of these cohorts, our model’s comparative 

performance indicated potential translatability to community populations but also the requirement for 

further validation experiments.  

 

We speculate that the superior prediction of concentric LVH and eccentric LVH is perhaps due to the 

distinct geometry of these phenotypes on imaging. A dilated LV characterises eccentric LVH, while 

concentric LVH is synonymous with a thickened LV wall and small LV cavity size. In contrast, normal 

LV and LV remodeling are less distinct, hence the inferior classification of these phenotypes using ML. 

 

Following the validation of the model in the SHIP dataset, we were interested in assessing whether the 

ECG-predicted phenotypes were associated with clinical outcomes. Using the test set in UKB 

(N=3,066) we observed a significant association between eccentric LVH and heart failure with a 3.2 

increased hazard rate of heart failure compared to those with normal LV geometry. Hypertension leads 

to heart failure through LVH and LV diastolic dysfunction, eventually progressing to LV systolic 

impairment in a subset of patients in the presence of chronic volume and pressure overload.34,35 The 

lack of association with outcomes in the other LVH phenotypes is likely due to the relatively short 

follow-up period in UKB and relatively small population size of the test set. However, with the UKB 
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aiming to scan 100,000 participants, there is potential to review outcomes in the future with greater 

numbers.  

 

Nauta et al (2020) showed that patients with heart failure with eccentric LVH have a clinical and 

biomarker phenotype that is distinctly different from those with concentric LVH.36 In a retrospective 

post-hoc analysis of 1,015 patients with heart failure (LV ejection fraction <40%), the majority of 

patients (N=873) had eccentric LVH and were, on average, younger (P=0.005) and had a lower ejection 

fraction (P<0.001). The authors also found that beta-blocker up-titration was associated with a mortality 

benefit in heart failure with eccentric but not concentric LVH (P<0.001). Hypertension is an important 

risk factor for heart failure, therefore, improvements in screening are essential to reduce its burden and 

associated morbidity.37 

 

Although the results are promising, further development and testing are required before 

implementation. For clinical applicability, the ML methods would need to be integrated into a point-of-

care application or directly into ECG machines. Developing a model for single lead ECG would also 

be of interest, particularly in the era of wearable and smartphone technology. Considering the high 

global burden of hypertension, a cost-effective and accurate risk prediction of LVH may facilitate 

population screening and timely treatment in individuals with subclinical disease and could serve as 

surrogate markers for predicting outcomes. We have shown that eccentric LVH classified by ML is 

strongly associated with heart failure. This provides an opportunity to enhance targeted and 

personalized therapy for improvement in clinical outcomes of heart failure.  

 

.The rate of new blood pressure-lowering therapies reaching the market has substantially declined, in 

part due to a lack of new targets for investigation. There is current interest in exploring the anti-fibrotic 

potential of sacubitril/valsartan (an angiotensin receptor-neprilysin inhibitor) in a clinical population, 

guided by imaging. REVERSE-LVH is a prospective, randomised, blinded endpoint (PROBE) clinical 

trial, designed to compare the effects of 52 weeks of treatment with sacubitril/valsartan with valsartan 

(an angiotensin receptor inhibitor) on the primary endpoint of change in interstitial volume measured 
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by CMR in patients with hypertension and LVH.38 The UKB repeat imaging study may be an avenue 

to explore ECG-based classifiers in the reversal of LVH in hypertension. 

 

Over thirty percent of adults worldwide have hypertension. Therefore, the potential cost-benefit of early 

detection of hypertension-mediated LVH is immense. Hypertension guidelines recommend the 12-lead 

ECG is performed in all patients newly diagnosed with hypertension.39 This provides an opportunity to 

compare the cost-benefit of ECG-based ML classification of LVH to that of conventional management. 

Important challenges will be to compare different sensitivity and specificity thresholds for the model to 

balance the trade-off between diagnostic accuracy and the economic benefit of downstream testing with 

potential false positive results. In order to implement an ECG-based ML screening strategy for LVH, it 

will be important to evaluate the cost-effectiveness under various clinical and cost scenarios.   

 

Although we were able to perform external validation, an important limitation is that both cohorts are 

predominantly White European ancestry, therefore, further work is warranted to elucidate the 

classification of hypertension-mediated LVH in other ethnicities. Furthermore, our experiments 

included only ECG and clinical characteristics as features in the ML models. The rationale for this was 

to incorporate features that are accessible in a wide range of healthcare settings. Nevertheless, there is 

potential to include additional features to improve model performance and further personalize the ML 

algorithm. The UKB has access to numerous biomarkers and healthcare data such as BP medication 

history, biochemistry results, metabolomics, and genetic data, including genetic risk scores. These data 

could be incorporated into models for further development. In this study, we used three supervised ML 

approaches, and these models can be developed further to increase accuracy. Models using XGBoost 

(Extreme Gradient Boosting), decision trees and K-nearest neighbor are attractive options.40–42 Agnostic 

approaches such as unsupervised ML and deep learning (DL) may also be used, and these may identify 

novel signals in the ECG associated with LVH. 

 

Perspectives 
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This study demonstrates the potential of ECG-predicted ML classifiers to detect hypertension-mediated 

LVH phenotypes. A ML tool to detect hypertension-mediated LVH phenotypes may enhance clinician 

ECG interpretation and expedite workflow by ensuring that advanced imaging tests are used for those 

who need it most, thereby reducing unnecessary testing and subsequent waiting times. ML models 

based on ECG predictors offer new opportunities for improved and potentially cost-effective LVH 

detection, enhancing the capabilities of non-specialists. Future work will require validation testing in 

ethnically diverse cohorts with efforts to continue to improve performance metrics using auxiliary tools 

and health economics studies to assess the cost-benefit of this approach.   

 

Conclusions 

ECG-based classifiers could discriminate between the four hypertension-mediated LVH phenotypes 

with external validation demonstrating robustness. We also observed a strong association between the 

ECG-predicted eccentric LVH and heart failure indicating there is important prognostic information 

gained from the model. This automated approach enhances the capabilities of non-specialists and 

potentially represents an accessible screening strategy for the early detection of hypertensives with 

LVH.  
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Novelty and Relevance 

 

What is new? 

• Supervised ML techniques using ECG and clinical data can detect LVH and discriminate 

between hypertension-mediated LVH phenotypes.  

• The ECG provides important prognostic information and may provide clinicians with valuable 

information to assess CVD risk in hypertensives, particularly in low-resource settings.  

• This automated approach may represent an efficient and accessible screening strategy for 

detecting subclinical LVH in hypertensives. 

 

What is relevant? 

• Hypertension clinical guidelines endorse using the 12-lead ECG in hypertensives to screen for 

LVH.  

• The diagnosis of hypertension-mediated LVH has relied on cardiac imaging, such as 

echocardiography and CMR.  

• The potential cost implications of deploying and interpreting these imaging modalities as a 

screening strategy to detect hypertension-mediated LVH is not economically feasible. 

 

Clinical/Pathophysiological implications? 

The ECG is a ubiquitous and low-cost diagnostic tool. In recent years, the transition to digitized ECG 

in electronic healthcare records and wearable technology has paved opportunities for ECG-based 

diagnostic and prognostic predictions. Early detection of hypertension-mediated LVH can enable 

regular healthcare follow-up, rigorous CV risk management and timely initiation of effective BP-

reducing therapies.  
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Tables 

 

Table 1. Baseline characteristics of UK Biobank participants.  
 

Overall 

(N=20,439) 

Normal LV 

(N= 19,408) 

LV remodeling 

(N=758) 

Eccentric LVH 

(N=181) 

Concentric LVH 

(N= 92) 
P-value 

Age (years) 66 [11] 66 [11] 68 [10] 63 [13] 67 [9] 0.008 

Sex (%)      <0.001 

        Female  9,335 (45.7) 8,744 (45.1) 457 (60.3) 77 (42.5) 57 (62.0)  

BMI (kg/m2) 26.7 [5.2] 26.6 [2.8] 28.5 [5.8] 25.9 [5.0] 27.3 [6.5] <0.001 

Systolic BP (mmHg) 149 [24] 148 [23] 156 [26] 158 [27] 159 [30] <0.001 

Diastolic BP (mmHg) 85 [14] 85 [14] 88 [15] 86 [16] 90 [17] <0.001 

High cholesterol (%) 14,475 (70.8) 13,711 (70.6) 576 (76.0) 118 (65.2) 14,475 (76.1) 0.03 

        Total cholesterol (mmol/L) 5.0 [1.4] 5.0 [1.4] 5.0 [1.3] 5.0 [1.3] 5.0 [1.4] 0.9 

        Non-HDL cholesterol (mmol/L) 3.5 [1.3] 3.5 [1.3] 3.5 [1.2] 3.5 [1.3] 3.4 [1.3] 0.7 

Diabetes (%) 1,422 (7.0)  1,277 (6.6) 121 (16.0) 12 (6.6) 12 (13.0) <0.001 

Smoking status (%)      <0.001 

         Never 12,059 (59.0) 11,518 (59.3) 392 (51.7) 99 (54.7) 50 (54.3)  

         Previous 7,157 (35.0) 6,770 (34.9) 288 (38.0) 65 (35.9) 34 (37.0)  

         Current 1,223 (6.0) 1,120 (5.8) 78 (10.3) 17 (9.4) 8 (8.7)  

Alcohol intake (%)      0.2 

         Never 908 (4.4) 852 (4.4) 46 (6.1) 7 (3.9) <5 (3.3)  

         Current  19,531 (95.6) 18,556 (95.6) 712 (93.9) 174 (96.1) 89 (96.7)  

Global ECG indices       

Ventricular rate (beats/min) 63 [13] 62 [13] 70 [16] 56 [13] 63 [12] <0.001 

Sokolow-Lyon (%) 403 (2.0) 360 (1.9) 26 (3.4) 11 (6.1) 6 (6.5) <0.001 

Cornell voltage (%) 1,663 (8.1) 1,573 (8.1) 67 (8.8) 12 (6.6) 11 (12.0) 0.4 

Pathological Q waves (%) 301 (1.5) 342 (1.8)  17 (2.2) 15 (8.3) 6 (6.5) <0.001 

ST segment deviation (mV) 0.01 [0.03] 0.01 [0.03] 0.02 [0.03] 0.01 [0.03] 0.01 [0.03] 0.8 

QT dispersion (ms) 58 [48] 58 [47] 61 [58] 75 [44] 65 [56] <0.001 

Corrected QT duration (ms) 385 [31] 385 [31] 394 [28] 389 [36] 389 [30] <0.001 
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P wave amplitude (mV) 0.05 [0.05] 0.05 [0.05] 0.04 [0.04] 0.06 [0.06] 0.05 [0.04] <0.001 

P wave terminal force in V1 (mV/ms) -2.1[2.8] -2.1[2.8] -2.5 [2.9] -1.7 [3.0] -2.5 [3.5] 0.08 

P wave duration (ms) 112 [22] 112 [22] 108 [20] 110 [28] 112 [15] 0.01 

Q wave amplitude (mV) -0.08 [0.3] -0.08 [0.04] -0.08 [0.05] -0.09 [0.05] -0.08 [0.05] 0.02 

Q wave duration (ms) 23 [4] 23 [4] 23 [5] 25 [5] 24 [6] <0.001 

R wave amplitude (mV) 0.49 [0.23] 0.49 [0.23] 0.48 [0.22] 0.55 [0.31] 0.58 [0.31] <0.001 

S wave amplitude (mV) -0.30 [0.19] -0.30 [0.18] -0.32 [0.21] -0.42 [0.26] -0.38 [0.26] <0.001 

QRS amplitude (mV) 0.92 [0.30] 0.92 [0.30] 0.92 [0.30] 1.15 [0.37] 1.14 [0.37] <0.001 

QRS duration (ms) 90 [16] 90 [16] 90 [18] 97 [16] 98 [15] <0.001 

QRS ascending slope (mV/s) 34.5 [15.1] 34.5 [15.4] 34.8 [15.3] 36.1 [18.3] 39.7 [17] <0.001 

QRS descending slope (mV/s) -53.9 [-18.9] -53.7 [18.5] -55.5 [18.7] -64.9 [22.0] -66.6 [24.7] <0.001 

T wave amplitude (mV)  0.14 [0.07]  0.14 [0.07] 0.13 [0.06] 0.15 [0.08] 0.14 [0.08] <0.001 

T wave duration (ms)  108 [16]  108 [16] 108 [16] 110 [18] 109 [19] <0.001 

 

Legend. Counts variables are presented as number (percentage), continuous variables as median [interquartile range]. To assess for associations between 

participants with LVH-mediated LVH phenotypes, the Wilcoxon signed-rank test was used for continuous data and Fisher’s exact test for categorical data. 

Global ECG indices are the median values calculated from the independent leads of the 12-lead ECG. Blood pressure and cholesterol values are adjusted for 

medication use. BMI: body mass index, BP: blood pressure, LV: left ventricle, LVH: left ventricular hypertrophy, mmHg: millimetres mercury, mmol/L: 

millimoles per litre, ms: milliseconds, mV: millivolts, s: seconds. 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 23, 2024. ; https://doi.org/10.1101/2024.04.22.24306204doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.22.24306204


 29 

Table 2. Baseline characteristics of particiants in the Study of Health in Pomerania.  

 

Overall 

(N=877) 

Normal LV 

(N= 704) 

LV remodeling 

(N=134) 

Eccentric LVH 

(N=12) 

Concentric LVH 

(N= 27) 
P-value 

Age (years) 56 [19] 55 [20] 61 [16] 49 [27] 59 [15] 0.02 

Sex (%)      0.04 

        Female  344 (39.2) 261 (37.1) 67 (50.0) 6 (50.0) 10 (37.0)  

BMI (kg/m2) 28.0 [5.4] 27.7 [5.4] 29.5 [5.1] 25.1 [4.3] 30.0 [5.8] 0.007 

Systolic BP (mmHg) 135 [18] 135 [18] 135 [22] 132 [22] 145 [20] <0.001 

Diastolic BP (mmHg) 82 [13] 82 [12] 81 [15] 75 [17] 83 [12] 0.3 

High cholesterol (%) 693 (79.0) 542 (77.0) 121 (90.3) 8 (66.7) 22 (81.5) 0.004 

        Total cholesterol (mmol/L) 5.8 [1.4] 5.8 [1.3] 6.1 [1.4] 5.4 [1.6] 6.0 [1.5] 0.01 

        Non-HDL cholesterol (mmol/L) 4.4 [1.3] 4.3 [1.4] 4.6 [1.2] 4.0 [2.1] 4.7 [1.3] 0.01 

Diabetes (%) 772 (88.0) 618 (87.8) 120 (89.6) 9 (75.0) 25 (92.6) 0.4 

Smoking status (%)          0.008 

         Previous 728 (83.0) 597 (84.8) 105 (78.4) 9 (75.0) 17 (63.0)  

         Current  149 (17.0) 107 (15.2)  29 (21.6)  <5 (25.0)  10 (37.0)  

Alcohol intake (%)      0.2 

         Never 53 (6.0) 41 (5.8) 10 (7.5) <5 (16.7) 0 (0)  

         Current 824 (94.0) 663 (94.2) 124 (92.5) 10 (83.3) 27 (100.0)  

Global ECG indices       

Ventricular rate (beats/min) 64 [14] 63 [14] 68 [13] 62 [10] 65 [16] 0.04 

Sokolow-Lyon (%) 50 (5.7) 37 (5.3) 6 (4.5) <5 (25.0) <5 (14.8) 0.004 

Cornell voltage (%) 75 (8.6) 62 (8.8)  10 (7.5)  <5 (8.3)  <5 (7.4) 0.9 

ST segment deviation (mV) 0.03 [0.03] 0.03 [0.03] 0.03 [0.03] 0.03 [0.05]  0.03 [0.03] 0.7 

QT dispersion (ms) 47 [45] 44 [45]  45 [51] 72 [22] 60 [39] 0.04 

Corrected QT duration (ms) 384 [27] 384 [29] 387 [26] 378 [36]  387 [26] 0.2 

P wave amplitude (mV) 0.02 [0.03] 0.02 [0.03]  0.02 [0.03] 0.01 [0.03]  0.03 [0.01] 0.7 

P wave terminal force in V1 (mV/ms) -2.8 [2.3] -2.8 [2.3] -3.2 [2.2] -1.8 [1.6] -2.5 [2.1] 0.5 
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P wave duration (ms) 86 [20] 86 [18] 86 [20] 79 [12]  86 [23] 0.8 

Q wave amplitude (mV) -0.10 [0.05] -0.10 [0.05]  -0.09 [0.04] -0.10 [0.06] -0.12 [0.05] 0.3 

Q wave duration (ms) 24 [4] 24 [4] 24 [4] 24 [3] 23 [4] 0.3 

R wave amplitude (mV) 0.55 [0.24] 0.55 [0.23] 0.53 [0.26] 0.65 [0.18] 0.63 [0.38] 0.4 

S wave amplitude (mV) -0.24 [0.16]  -0.23 [0.16] -0.25 [0.18] -0.24 [0.13] -0.28 [0.18] 0.1 

QRS amplitude (mV) 0.98 [0.35] 0.98 [0.33] 0.96 [0.34] 1.22 [0.27] 1.20 [0.40] 0.7 

QRS duration (ms) 90 [10] 90 [10] 89 [9]  90 [10]  92 [9] 0.1 

QRS ascending slope (mV/s) 37.9 [14.9] 37.6 [14.3]  38.1 [17.3] 41.1 [9.0] 44.0 [25.9] 0.4 

QRS descending slope (mV/s) -55.1 [19.6] -54.7 [18.8]  -54.8 [21.5] -67.1 [21.9] -62.0 [26.6] 0.1 

T wave amplitude (mV) 0.16 [0.08] 0.16 [0.08]  0.15 [0.07] 0.16 [0.13] 0.14 [0.08] 0.6 

T wave duration (ms) 112 [18] 112 [18] 108 [16] 120 [12] 110 [21] 0.4 

 

Legend. Counts variables are presented as number (percentage), continuous variables as median [interquartile range]. To assess for associations between 

participants with LVH-mediated LVH phenotypes, the Wilcoxon signed-rank test was used for continuous data and Fisher’s exact test for categorical data. 

Global ECG indices are the median values calculated from the independent leads of the 12-lead ECG. Blood pressure and cholesterol values are adjusted for 

medication use. BMI: body mass index, BP: blood pressure, LV: left ventricle, LVH: left ventricular hypertrophy, mmHg: millimetres mercury, mmol/L: 

millimoles per litre, ms: milliseconds, mV: millivolts, s: seconds. 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 23, 2024. ; https://doi.org/10.1101/2024.04.22.24306204doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.22.24306204


 31 

Table 3. Performance metrics of supervised machine learning classifiers using ECG and clinical variables in UK Biobank and validation testing in 

Study of Health in Pomerania. 

 

 

 

 

AUC:  area under the receiver operator curve; LVH: left ventricular hypertrophy;SHIP: Study of Health in Pomerania. 

 

 

 UK Biobank Validation in SHIP 

 Logistic regression Support vector machine Random forest Support vector machine 

Accuracy (%) 0.74 0.79 0.73 0.75 

Sensitivity (%) 0.47 0.59 0.45 0.51 

Specificity (%) 0.83 0.87 0.82 0.85 

Precision (%) 0.68 0.78 0.64 0.63 

F1 score (%) 0.56 0.67 0.53 0.56 

AUC 0.71 0.69 0.70 0.65 
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Figure 1. Flow diagram illustrating the steps involved in UK Biobank participant selection. 

CMR: cardiac magnetic resonance imaging; HCM: hypertrophic cardiomyopathy; LV: left ventricle; 

LVH: left ventricular hypertrophy. 
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A 

 

B 

 

 

Figure 2. (A) Classification of hypertension mediated LVH phenotypes in UK Biobank and Study of 

Health in Pomerania using support vector machine. 

(B) Classification of hypertension mediated LVH phenotypes using ECG and clinical vs clinical data 

alone in UK Biobank and Study of Health in Pomerania with support vector machine.  

 

ECG: electrocardiogram; LV: left ventricle; LVH: left ventricular hypertrophy. 
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Figure 3. Associations of ECG-predicted hypertension-mediated LVH phenotypes and clinical 

outcomes. 

Results are hazard ratios from Cox hazards proportional regression models. The diseases listed are set as 

the model outcome (response variable) and hypertension-mediated LV phenotype in the exposure of 

interest with normal LV as the reference group. The model was adjusted for age, sex and BMI.  

CI: confidence interval; HR: hazard ratio; MACE: major adverse cardiovascular events; LVH: left 

ventricular hypertrophy 
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Supplementary material 

 

Supplementary Table 1. UK Biobank data fields used to identify hypertensive participants.  

Phenotype Data fields Field names Data code definitions 

Hypertension 20002 
Non-cancer illness code, self-

reported 

Hypertension, 

Essential hypertension 

Hypertension 6150 
Vascular/heart problems 

diagnosed by doctor 
High blood pressure 

Hypertension 6177 
Medication for cholesterol, blood 

pressure or diabetes 

Blood pressure 

medication 

Hypertension 6153 

Medication for cholesterol, blood 

pressure, diabetes or take 

exogenous hormones 

Blood pressure 

medication 

Hypertension 4080 
Systolic blood pressure, 

automated reading 
≥130 mmHg 

Hypertension 4079 
Diastolic blood pressure, 

automated reading 
≥85 mmHg 

Hypertension 93 
Systolic blood pressure, manual 

reading 
≥130 mmHg 

Hypertension 94 
Diastolic blood pressure, manual 

reading 
≥85 mmHg 

Aortic stenosis 20002 
Non-cancer illness code, self-

reported 
Aortic stenosis 

Hypertrophic 

cardiomyopathy 
20002 

Non-cancer illness code, self-

reported 

Hypertrophic 

cardiomyopathy 
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Supplementary Table 2. Definition of ECG biomarkers associated with LVH. 

ECG marker Definition 

Sokolow-Lyon index (SV1 or SV2) + (RV5 or RV6) >35mm or R wave in aVL >=11mm 

Cornell voltage SV3 +RaVL >28mm (men) >20mm (women)  

Pathological Q 

waves 

>30ms in duration and >1/3 of the R wave in depth in two or more 

contiguous leads (I, II, V1-6) 

R wave amplitude 

(mV)  
Amplitude of R wave in V5 or V6 >2.6mV, in aVL>1.1mV 

QRS amplitude (mV)  
Absolute value of the difference between maximum and minimum of the 

QRS complex values 

QRS duration (ms)  QRS width from beginning of Q wave to end of S wave, (>=90ms) 

QRS ascending slope Upward slope of QRS complex 

QRS descending 

slope 
Downward slope of QRS complex 

QTc interval (ms)  Prolonged corrected QT >=450ms (men) >=460ms (women) 

STT segment 

amplitude 

Absolute value of the difference between maximum and minimum of the 

ST segment values 

ST segment 

displacement 

Difference between the beginning of the QRS complex and the beginning 

of the T wave 

QTc dispersion Inter lead variations in QT segment length (<40ms) 

T wave inversion 
T wave amplitude ≤ −0.1mV or a negative inflexion of at least 0.1mV in 

lead I, II or V3-6 

T wave amplitude 

(mV)  

Absolute value of the difference between maximum and minimum of the 

T wave complex values 

T wave axis (∘) <-15º to ≥-180º or >105º to ≤180º 

T peak to T end 

interval (ms)  

Duration between the peak of the T wave and the end of the T wave in 

each lead 
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Supplementary Table 3. Codes used to define clinical outcomes using ICD-9, ICD-10and OPCS4 

codes.  

 

Myocardial Infarction 

ICD10 codes Definition 

I21 Acute myocardial infarction 

I21.0 Acute transmural myocardial infarction of anterior wall 

I21.1 Acute transmural myocardial infarction of inferior wall 

I21.2 Acute transmural myocardial infarction of other sites 

I21.3 Acute transmural myocardial infarction of unspecified site 

I21.4 Acute subendocardial myocardial infarction 

I21.9 Acute myocardial infarction, unspecified 

I22 Subsequent myocardial infarction 

I22.0 Subsequent myocardial infarction of anterior wall 

I22.1 Subsequent myocardial infarction of inferior wall 

I22.8 Subsequent myocardial infarction of other sites 

I22.9 Subsequent myocardial infarction of unspecified site 

I23 Certain current complications following acute myocardial infarction 

I23.0 
Haemopericardium as current complication following acute myocardial 

infarction 

I23.1 
Atrial septal defect as current complication following acute myocardial 

infarction 

I23.2 
Ventricular septal defect as current complication following acute myocardial 

infarction 

I23.3 
Rupture of cardiac wall without haemoprericardium as current complication 

following acute myocardial infarction 

I23.5 
Rupture of papillary muscle as current complication following acute 

myocardial infarction 

I23.6 
Thrombosis of atrium, auricular appendage and ventricle as current 

complications following acute myocardial infarction 

I23.8 Other current complications following acute myocardial infarction 

I24 Other acute ischaemic heart disease 

I24.0 Coronary thrombosis not resulting in myocardial infarction 

I24.1 Dressler’s syndrome 

I24.8 Other forms of acute ischaemic heart disease 

I24.9 Acute ischaemic heart disease, unspecified 

I25 Chronic ischaemic heart disease 

I25.0 Atherosclerotic cardiovascular disease 

I25.1 Atherosclerotic heart disease 

I25.2 Old myocardial infarction 

I25.3 Aneurysm of heart 

I25.4 Coronary artery aneurysm 

I25.5 Ischaemic cardiomyopathy 

I25.6 Silent myocardial ischaemia 

I25.8 Other forms of chronic ischaemic heart disease 

I25.9 Chronic ischaemic heart disease, unspecified 

ICD9 codes Definition 
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4109 Acute myocardial infarction 

OPCS4 Definition 

K40 Saphenous vein graft replacement of coronary artery 

K40.1 Saphenous vein graft replacement of one coronary artery 

K40.2 Saphenous vein graft replacement of two coronary arteries 

K40.3 Saphenous vein graft replacement of three coronary arteries 

K40.4 Saphenous vein graft replacement of four or more coronary arteries 

K40.8 Other specified saphenous vein graft replacement of coronary artery 

K40.9 Unspecified saphenous vein graft replacement of coronary artery 

K41 Other autograft replacement of coronary artery 

K41.1 Autograft replacement of one coronary artery NEC 

K41.2 Autograft replacement of two coronary arteries NEC 

K41.3 Autograft replacement of three coronary arteries NEC 

K41.4 Autograft replacement of four or more coronary arteries NEC 

K41.8 Other specified other autograft replacement of coronary artery 

K41.9 Unspecified other autograft replacement of coronary artery 

K42 Allograft replacement of coronary artery 

K42.1 Allograft replacement of one coronary artery 

K42.2 Allograft replacement of two coronary arteries  

K42.3 Allograft replacement of three coronary arteries 

K42.4 Allograft replacement of four or more coronary arteries 

K42.8 Other specified other allograft replacement of coronary artery 

K42.9 Unspecified other allograft replacement of coronary artery 

K44 Other replacement of coronary artery 

K44.1 Replacement of coronary arteries using multiple methods 

K44.2 Revision of replacement of coronary artery 

K44.8 Other specified other replacement of coronary artery 

K44.9 Unspecified other replacement of coronary artery 

K45 Connection of thoracic artery to coronary artery  

K45.1 Double anastomosis of mammary arteries to coronary arteries  

K45.2 Double anastomosis of thoracic arteries to coronary arteries NEC 

K45.3 Anastomosis of mammary artery to left anterior descending coronary artery 

K45.4 Anastomosis of mammary artery to coronary artery NEC 

K45.5 Anastomosis of thoracic artery to coronary artery NEC 

K45.6 Revision of connection of thoracic artery to coronary artery 

K45.8 Other specified connection of thoracic artery to coronary artery 

K45.9 Unspecified connection of thoracic artery to coronary aartery 

K49 Transluminal balloon angioplasty of coronary artery 

K49.1 Percutaneous transluminal balloon angioplasty of one coronary artery 

K49.2 Percutaneous transluminal balloon angioplasty of multiple coronary arteries 

K49.3 
Percutaneous transluminal balloon angioplasty of bypass graft of coronary 

artery 

K49.4 Percutaneous transluminal cutting balloon angioplasty of coronary artery 

K49.8 Other specified transluminal balloon angioplasty of coronary artery 

K49.9 Unspecified transluminal balloon angioplasty of coronary artery 

K50 Other therapeutic transluminal operations on coronary artery 

K50.1 Percutaneous transluminal laser coronary angioplasty  

K50.2 Percutaneous transluminal coronary thrombolysis using streptokinase 

K50.3 
Percutaneous transluminal injection of therapeutic substance into coronary 

artery NEC 

K50.4 Percutaneous transluminal atherectomy of coronary artery  

K50.8 Other specified other therapeutic transluminal; operations on coronary artery 
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K50.9 Unspecified other therapeutic transluminal operations on coronary artery 

K75 
Percutaneous transluminal balloon angioplasty and insertion of stent into 

coronary artery 

K75.1 
Percutaneous transluminal balloon angioplasty and insertion of 1-2 drug-

eluting stents into coronary artery 

K75.2 
Percutaneous transluminal balloon angioplasty and insertion of 3 or more 

drug-eluting stents into coronary artery 

K75.3 
Percutaneous transluminal balloon angioplasty and insertion of 1-2 stents 

into coronary artery 

K75.4 
Percutaneous transluminal balloon angioplasty and insertion of 3 or more 

stents into coronary artery NEC 

K75.8 
Other specified percutaneous transluminal balloon angioplasty and insertion 

of stent into coronary artery 

K75.9 
Unspecified percutaneous transluminal balloon angioplasty and insertion of 

stent into coronary artery 

Heart Failure 

ICD10 codes Definition 

I11.0 Hypertensive heart disease with (congestive) heart failure 

I13.0 Hypertensive heart and renal disease with (congestive) heart failure 

I13.2  
Hypertensive heart and renal disease with both (congestive) heart failure and 

renal failure 

I25.5 Ischaemic cardiomyopathy 

I50 Heart failure 

I50.0 Congestive heart failure 

I50.1 Left ventricular failure 

I50.9 Heart failure, unspecified 

J81 Pulmonary oedema 

K76.1 Chronic passive congestion of liver 

ICD9 codes Definition 

4280 Congestive heart failure 

4281 Left heart failure 

4289 Heart failure, unspecified 

OPCS4 codes Definition 

K59.6 Implantation of cardioverter defibrillator using three electrode leads 

K61.7 Implantation of biventricular cardiac pacemaker system 

K60.7 Implantation of intravenous biventricular cardiac pacemaker system 

Stroke 

ICD10 codes Definition 

I60 Subarachnoid haemorrhage 

I60.0 Subarachnoid haemorrhage from carotid siphon bifurcation 

I60.1 Subarachnoid haemorrhage from middle cerebral artery 

I60.2 Subarachnoid haemorrhage from anterior communicating artery 

I60.3 Subarachnoid haemorrhage from posterior communicating artery 

I60.4 Subarachnoid haemorrhage from basilar artery 

I60.5 Subarachnoid haemorrhage from vertebral artery 

I60.6 Subarachnoid haemorrhage from other intracranial arteries 
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I60.7 Subarachnoid haemorrhage from intracranial artery, unspecified 

I60.8 Other subarachnoid haemorrhage 

I60.9 Subarachnoid haemorrhage, unspecified 

I61 Intracerebral haemorrhage 

I61.0 Intracerebral haemorrhage in hemisphere subcortical 

I61.1 Intracerebral haemorrhage in hemisphere, cortical 

I61.2 Intracerebral haemorrhage in hemisphere, unspecified 

I61.3 Intracerebral haemorrhage in brain stem 

I61.4 Intracerebral haemorrhage in cerebellum 

I61.5 Intracerebral haemorrhage, intraventricular 

I61.6 Intracerebral haemorrhage, multiple localised 

I61.8 Other intracerebral haemorrhage 

I61.9 Intracerebral haemorrhage, unspecified 

I62 Other nontraumatic intracranial haemorrhage 

I62.0 Subdural haemorrhage (acute) (nontraumatic) 

I62.1 Nontraumatic extradural haemorrhage 

I62.9 Intracranial haemorrhage (nontraumatic), unspecified 

I63 Cerebral infarction 

I63.0 Cerebral infarction due to thrombosis of precerebral arteries 

I63.1 Cerebral infarction due to embolism of precerebral arteries 

I63.2 
Cerebral infarction due to unspecified occlusion or stenosis of precerebral 

arteries 

I63.3 Cerebral infarction due to thrombosis of cerebral arteries 

I63.4 Cerebral infarction due to embolism of cerebral arteries 

I63.5 
Cerebral infarction due to unspecified occlusion or stenosis of cerebral 

arteries 

I63.6 Cerebral infarction due to cerebral venous thrombosis, nonpyogenic 

I63.8 Other cerebral infarction 

I63.9 Cerebral infarction, unspecified 

I64 Stroke, not specified as haemorrhage or infarction 

I65 
Occlusion and stenosis of precerebral arteries, not resulting in cerebral 

infarction 

I65.0 Occlusion and stenosis of vertebral artery 

I65.1 Occlusion and stenosis of basilar artery 

I65.2 Occlusion and stenosis of carotid artery 

I65.3 Occlusion and stenosis of multiple and bilateral precerebral arteries 

I65.8 Occlusion and stenosis of other precerebral artery 

I65.9 Occlusion and stenosis of unspecified precerebral artery 

I66 
Occlusion and stenosis of cerebral arteries, not resulting in cerebral 

infarction 

I66.0 Occlusion and stenosis of middle cerebral artery 

I66.1 Occlusion and stenosis of anterior cerebral artery 

I66.2 Occlusion and stenosis of posterior cerebral artery 

I66.3 Occlusion and stenosis of cerebellar arteries 

I66.4 Occlusion and stenosis of multiple and bilateral cerebral arteries 

I66.8 Occlusion and stenosis of other cerebral artery 

I66.9 Occlusion and stenosis of unspecified cerebral artery 

I67.0 Dissection of cerebral arteries, nonruptured 

I67.8 Other specified cerebrovascular diseases 

I67.9 Cerebrovascular disease, unspecified 

I69 Sequelae of cerebrovascular disease 
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ICD9 codes Definition 

4309 Subarachnoid haemorrhage 

4319 Intracerebral haemorrhage 

4320 Nontraumatic extradural haemorrhage  

4321 Subdural haemorrhage  

4331 Occlusion and stenosis of carotid artery 

4339 Occlusion and stenosis of precerebral arteries, unspecified 

4349 Occlusion of cerebral arteries, unspecified 

4369 Acute but ill-defined cerebrovascular disease 

4371 Other generalised ischaemic cerebrovascular disease 

OPCS4 codes Definition 

L35.4 Percutaneous transluminal embolectomy of cerebral artery 

Ventricular Arrythmias 

ICD10 codes Definition 

I47.2 Ventricular tachycardia 

I49.0 Ventricular fibrillation and flutter 

I46.0 Cardiac arrest with successful resuscitation 

I46.1 Sudden cardiac death, so described 

I46.9 Cardiac arrest, unspecified 

I47.0 Re-entry ventricular arrythmia 

ICD9 codes Definition 

4270 Paroxysmal ventricular tachycardia 

4271 Paroxysmal ventricular tachycardia 

4272 Paroxysmal tachycardia, unspecified 

4274 Ventricular fibrillation and flutter 

OPCS4 codes Definition 

K59 Cardioverter defibrillator introduced through vein 

K59.1 Implantation of cardioverter defibrillator using one electrode lead 

K59.2 Implantation of cardioverter defibrillator using two electrode leads 

K59.3 Resitting of leads of cardioverter defibrillator 

K59.4 Renewal of cardioverter defibrillator 

K59.6 Implantation of cardioverter defibrillator using three electrode leads  

K59.8 Other specified cardioverter defibrillator introduced through the vein 

K59.9 Unspecified cardioverter defibrillator introduced through the vein 

K72 Other cardioverter defibrillator 

K72.1 Implantation of subcutaneous cardioverter defibrillator 

K72.3 Renewal of subcutaneous cardioverter defibrillator 
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Supplementary Table 4. Associations of ECG-predicted hypertension-mediated LVH phenotypes 

and clinical outcomes. 

 

MACE Heart Failure 

HR (95% CI) P-value HR (95% CI) P-value 

LV remodeling 1.40 (0.37-2.76) 0.1 1.55 (071.-3.36) 0.3 

Eccentric LVH 0.93 (0.42-2.04) 0.9 3.24 (1.06-9.86) 0.04 

Concentric LVH 1.01 (0.37-2.76) 0.1 1.27 (0.17-9.65) 0.8 

 

 
AUC:  area under the receiver operator curve; CI: confidence interval; HR: hazard ratio; MACE: 

major adverse cardiovascular events; LVH: left ventricular hypertrophy. 
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Supplementary figure 1. Ranking of the top 40 features using chi-squared feature selection. 
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