1 Full Title;

- 2 Association of aortic clamping time with systemic immune inflammation and systemic
- 3 inflammatory response indexes in isolated coronary bypass surgery
- 4 Authors;
- 5 1. Duygu Durmaz; Cardiovascular specialist, Doctor, Department of Cardiothoracic and
- 6 Vascular Surgery, Bandirma 17 Eylül University, Orcid Id; 0000-0001-9617-8046
- 7 2. Sedat Gündöner; Perfusionist, Department of Cardiothoracic and Vascular Surgery,
- 8 Bandirma Education and Research Hospital, Orcid Id; 0000-0002-0513-8581
- 9 3. Hayrettin Tekümit; Cardiovascular specialist, Proffessor Doctor, Department of
- 10 Cardiothoracic and Vascular Surgery, Bandirma 17 Eylül University, Orcid Id; 0000-0002-
- 11 5157-3592
- 12 Short Title;
- 13 Aortic Clamping Time and Inflammation in CABG
- 14 Corresponding Author And Contact Information:
- Duygu Durmaz; Bandırma 17 Eylül Üniversitesi, Yeni Mahalle Şehit Astsubay Mustafa Soner
- 16 Varlık Caddesi No:77, 10250 Bandırma/Balıkesir
- 17 +905068936523 ddurmaz@bandirma.edu.tr
- 18 Total word count; 1991

19

20

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Objective: Aortic clamping time during cardiopulmonary bypass (CPB) has been associated with inflammatory processes such as systemic inflammatory response syndrome. In this study, we evaluated the association of CPB and aortic cross-clamping (ACC) times with systemic inflammatory response index (SIRI) and systemic immune inflammation index (SIII) in isolated coronary artery bypass surgery (CABG). Methods: 96 patients who underwent isolated CABG at a single center between 2021 and 2023 were retrospectively analyzed. Patients were divided into below median aortic clamp time (group I; n=56) and above median aortic clamp time (group II; n=42) according to median aortic clamp time (66.2 minutes). Demographic data, preoperative and postoperative laboratory parameters were recorded. SIRI and SIII values were calculated. **Results**: Baseline demographic data were similar between the groups. The duration of CPB and aortic clamping was significantly longer in group II (p<0.001). SIII and SIRI values were significantly increased in both groups in the postoperative period. However, there was no correlation between increased CPB and ACC durations and SIII and SIRI. However, no significant difference was observed in postoperative SIII and SIRI values between the groups. A weak correlation was found between SIII index and postoperative albumin levels. Conclusions: There is no significant relationship between aortic clamping time and inflammatory indices in patients undergoing isolated CABG surgery. Increasing the duration of surgery does not affect the change in SIRI and SIII values. **Keywords:** Coronary artery bypass; Cardiopulmonary bypass; Systemic immune inflammation index; Systemic inflammation response index.

1. Introduction

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

During cardiopulmonary bypass (CPB), the patient receives constant blood flow through a mechanical pump (1). In CPB, a cross-clamp is placed over the aorta to provide an immobilized and bloodless operating field (2). Systemic inflammatory response syndrome (SIRS) is an inflammatory process that can be triggered by cardiac surgery and CPB. SIRS is associated with the release of several proinflammatory mediators after open heart surgery procedures that may affect postoperative outcomes (3). The marked increase in SIRS after coronary artery bypass grafting (CABG) may be related to the duration of perioperative CPB and aortic cross clamping (ACC). Many studies have shown that the duration of CPB and ACC during cardiac surgery are predictors of mortality and morbidity. However, there is no consensus on the safe time limit. In this regard, researchers have reported different results for the safe use of CPB and ACC (4.5). The concepts of systemic inflammatory response index (SIRI) and systemic immune inflammation index (SIII) have been defined as new inflammatory markers (6,7). These indices include the main components of inflammatory markers such as neutrophils, monocytes, lymphocytes and platelets and have been presented as possible mortality prognostic factors in different cardiovascular diseases (8,9). In this study, we tried to determine the relationship between aortic clamping time and inflammatory indexes in isolated coronary artery bypass surgery. 2. Methods 2.1 Study Design and Patients The population of this retrospective study consisted of 96 patients undergoing first-time isolated CABG at a single center between June 2021 and September 2023. Patients over 18 years of age who underwent elective isolated on-pump coronary artery bypass surgery were included. Reoperations, patients with additional surgical procedures, patients with known

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

cerebrovascular disease, bleeding pathology and patients with incomplete medical data were excluded. The study groups were divided into those with a median aortic clamping time of the total population below (Group I) and above (Group II) 66.2 minutes. The study was approved by XXX University Non-Interventional Research Ethics Committee with the ethics committee decision dated 16.01.2024 and numbered 2024-1. 2.2 Data collection and calculation of inflammatory indexes Demographic data, preoperative and postoperative hematologic and biochemical analyses, and clinical data including postoperative processes were obtained by examining the computerized patient record system. SIRI and SIII indexes related with systemic inflammation were calculated as follows (10). SIII; peripheral platelet count x neutrophil count / lymphocyte count. SIRI; neutrophil count x monocyte count / lymphocyte count 2.3 Operative technique All patients underwent standard median sternotomy under general anesthesia. After appropriate anticoagulation with 400 IU/kg heparin, cardiopulmonary bypass (CPB) was initiated by cannulation of the ascending aorta and right atrium. All patients were monitored with moderate hypothermia (28 - 32 °C) and myocardial protection was achieved with antegrade-retrograde combined blood cardioplegia. Mean arterial pressure was maintained between 60 and 80 mmHg during CPB. After the procedure was completed, CPB was terminated after the body temperature of the patients was raised to 37 °C. Decanulation was performed after neutralization with protamine. 2.4 Statistical analysis Statistical evaluation was performed with IBM SPSS 25.0 (SPSS Inc., Chicago, IL, USA) package program. While evaluating the study data, quantitative variables were represented by mean, standard deviation, median, min and max values, and qualitative variables were represented by descriptive statistical methods such as frequency and percentage. Shapiro

Wilks test and Box Plot graphs were used to evaluate the conformity of the data to normal distribution. Student's t-test was used for quantitative two-group evaluations showing normal distribution, and Mann Whitney-U test was used for those not showing normal distribution. Between two follow-ups, Paired Samples test was used for those with normal distribution and Wilcoxon test was used for those without normal distribution. Chi-Square test and Fisher Exact Test were used to compare qualitative data. Pearson correlation analysis was used to evaluate the relationships between variables. The results were evaluated at 95% confidence interval and significance was evaluated at p<0.05 level.

3. Results

A total of 96 patients who underwent isolated CABG were included in the study. The mean ages of the patients included in the study were 63.6±8.8 years for group I and 66±8.9 years for group II (p>0.05). 64.8% of patients in group I and 73.8% of patients in group II were male. The study groups were divided into those with a median aortic clamping time of the total population below (Group I) and above (Group II) 66.2 minutes. The mean aortic clamping times were 51.7±10.7 minutes for group I and 89.9±13.0 minutes for group II (p<0.05) (Table 1).

The changes in the parameters within and between the groups at preoperative and postoperative 24th hour periods are shown in Table 2. Significant differences were found between group I and group II in SIII, SIRI, CRP and albumin values at preoperative and postoperative 24 hours. In the comparison between the groups, preoperative and postoperative SIII, SIRI and albumin values were similar. Although there was a statistical difference in preoperative CRP levels between the groups, no statistical difference was found between the CRP values in the postoperative 24th hour measurements (Table 2). The graphical changes of SIII and SIRI parameters of group I and group II are shown in figures I and II.

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

When the correlation of SIRI and SIII values with CPB and ACC duration, postoperative albumin and CRP values were analyzed, it was found that only postoperative SIII value had a weak correlation with postoperative albumin level (r=0.240; p=0.019) (Table 3). No statistically significant correlation was found for other postoperative variables. 4. Discussion To our knowledge, this is the first study to present the relationship and variation of different inflammatory indices with aortic cross-clamping time in on-pump coronary artery bypass surgery. In this retrospective study, we evaluated the relationship between aortic clamp duration and inflammatory indices in 96 patients undergoing isolated CABG surgery. Different studies have shown that some complications develop and the risk of death increases in patients exposed to prolonged a ortic cross-clamping (11,12,13). The systemic immune inflammatory index (SIII) is an inflammatory index that includes three differently shaped elements involved in the immune response, including neutrophils, lymphocytes and platelets. This index has been reported to be a prognostic marker used to determine long-term prognosis in coronary revascularization (14). Researchers have also described this index as an important marker reflecting the inflammatory status in various clinical pictures including appendicitis, coronary artery disease and neoplasms (15,16,17). Systemic inflammatory response describes the pathophysiologic response of the immune system to events such as infection, trauma, burns and various other injuries (18). Many factors associated with the contact of blood with extracorporeal artificial circuits in cardiac surgery contribute to SIRS formation (19). The systemic inflammatory response index (SIRI) is defined as an inflammatory index describing immunologic defenses involving neutrophils, monocytes and lymphocytes (20). Although CPB is considered a safe method to facilitate cardiac surgery, prolonged CPB is associated with complications (21). Exposure of blood to abnormal shear stress and contact

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

with the artificial surface of the bypass circuit leads to pro-inflammatory activation of the coagulation and complement systems, endothelial cell death and platelet activation (22,23,24). In addition, prolonged aortic cross-clamping time is known to be associated with decreased early survival after cardiac surgery (25). It is not known how the inflammatory indexes SIII and SIRI, which have emerged as a prognostic factor for cardiovascular diseases, change depending on the duration of CPB and aortic cross-clamping. In our study, we tried to determine the effect of different aortic cross-clamping times on these indexes in patients undergoing isolated on-pump CABG. We divided the included patients into two groups according to the median aortic cross-clamp time (66.2 min) of patients undergoing isolated CABG. The aortic cross-clamp time was 51.7±10.7 and 89.9±13.0 min in group I and group II, respectively. Baseline demographic characteristics of the patients were similar. Mean CPB duration was 103.8±20 and 134.4±21.3 min in group I and group II, respectively. Preoperative SIII and SIRI values were similar in both groups. In the postoperative period, there was an increase in these indices within the groups. We think that this is related to the increase in the inflammatory response to CPB. However, postoperative SIII and SIRI indices were similar between the groups. This suggests that the relatively long aortic clamping time did not affect the inflammatory indices. Robic M et al. reported that a longer duration of CPB was associated with increased blood neutrophil count (26). In our study, it was determined that the SIII value including the neutrophil parameter was not related with duration. C-Reactive Protein (CRP) increases significantly in response to inflammation. CRP levels increase significantly after cardiac surgery with CPB (27). In our study, although postoperative CRP values increased statistically significantly in both groups compared to preoperative values, postoperative measurements were similar between the groups. In cardiac surgery with CPB, serum albumin levels decrease with the effect of hemodilution (28). At the

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

same time, high inflammation parameters have been independently associated with hypoalbuminemia (29). In our study, a significant decrease in postoperative serum albumin levels was observed in both groups and postoperative serum albumin levels were similar between the groups. There was no correlation between postoperative SIII and SIRI indices and CPB duration, aortic clamping duration and CRP levels. However, a weak statistically significant correlation was found between postoperative SIII index and postoperative albumin levels (r=0.252; p=0.018). Our study is the first to evaluate the relationship between inflammatory indices and operative times in patients undergoing isolated CABG surgery. However, there are some limitations. First of all, our study has a non-randomized design because it is retrospective. This creates the possibility of limiting the population included. In addition, the fact that it is a single-center study also limits the sample size. We believe that the relationship between CPB and inflammatory indices should be investigated in detail with a larger sample group. **Conflict of interest** None **Funding** None Acknowledgements None References

- 192 1) Sarkar M, Prabhu V. Basics of cardiopulmonary bypass. Indian J Anaesth. 2017
- 193 Sep;61(9):760-767. doi: 10.4103/ija.IJA_379_17. PMID: 28970635; PMCID:
- 194 PMC5613602.
- 195 2) Machin D, Allsager C. Principles of cardiopulmonary bypass. Contin Educ Anaesth Crit
- 196 Care Pain. 2006;6(5):176–181. doi: 10.1093/bjaceaccp/mkl043.
- 197 3) Gümüş F, Erkalp K, Kayalar N, Alagöl A. Yaşlı hasta popülasyonunda kalp cerrahisi ve
- anestezi yaklaşımı. Türk Göğüs Kalp Damar Dergisi. 2013; 21 (1):250–255.
- 199 4) Verheijen LP, van Zaane B, van Aarnhem EE, Peelen LM, van Klei WA. The association
- between a ortic cross clamp time and postoperative morbidity and mortality in mitral valve
- repair: a retrospective cohort study. J Cardiovasc Surg (Torino). 2018 Jun;59(3):453-461.
- doi: 10.23736/S0021-9509.18.10123-6. Epub 2018 Feb 8. PMID: 29430884.
- 5) Mehmood A, Nadeem RN, Kabbani MS, Khan AH, Hijazi O, Ismail SR, Shath G, Eng
- WW, Jawed S. Impact of Cardiopulmonary Bypass and Aorta Cross Clamp Time on the
- Length of Mechanical Ventilation after Cardiac Surgery among Children: A Saudi
- 206 Arabian Experience. Cureus. 2019 Aug 7;11(8):e5333. doi: 10.7759/cureus.5333. PMID:
- 207 31598440; PMCID: PMC6778048.
- 208 6) Parmana IMA, Boom CE, Poernomo H, Gani C, Nugroho B, Cintyandy R, Sanjaya L,
- Hadinata Y, Parna DR, Hanafy DA. Systemic Immune-Inflammation Index Predicts
- Prolonged Mechanical Ventilation and Intensive Care Unit Stay After off-Pump Coronary
- 211 Artery Bypass Graft Surgery: A Single-Center Retrospective Study. Vasc Health Risk
- 212 Manag. 2023;19:353-361
- 213 https://doi.org/10.2147/VHRM.S409678
- 214 7) Urbanowicz T, Michalak M, Olasińska-Wiśniewska A, Rodzki M, Witkowska A, Gasecka
- A, Buczkowski P, Perek B, Jemielity M. Neutrophil Counts, Neutrophil-to-Lymphocyte
- Ratio, and Systemic Inflammatory Response Index (SIRI) Predict Mortality after Off-

- Pump Coronary Artery Bypass Surgery. Cells. 2022 Mar 26;11(7):1124. doi:
- 218 10.3390/cells11071124. PMID: 35406687; PMCID: PMC8997598.
- 219 8) Peng Y, Huang W, Shi Z, Chen Y, Ma J. Positive association between systemic immune-
- inflammatory index and mortality of cardiogenic shock. Clin Chim Acta. 2020
- Dec;511:97-103. doi: 10.1016/j.cca.2020.09.022. Epub 2020 Oct 9. PMID: 33045194.
- 222 9) Luo H, He L, Zhang G, Yu J, Chen Y, Yin H, Goyal H, Zhang GM, Xiao Y, Gu C, Yin
- 223 M, Jiang X, Song X, Zhang L. Normal Reference Intervals of Neutrophil-To-Lymphocyte
- Ratio, Platelet-To-Lymphocyte Ratio, Lymphocyte-To-Monocyte Ratio, and Systemic
- Immune Inflammation Index in Healthy Adults: a Large Multi-Center Study from Western
- 226 China. Clin Lab. 2019 Mar 1;65(3). doi: 10.7754/Clin.Lab.2018.180715. PMID:
- 227 30868857.
- 228 10) Lin KB, Fan FH, Cai MQ, Yu Y, Fu CL, Ding LY, Sun YD, Sun JW, Shi YW, Dong ZF,
- Yuan MJ, Li S, Wang YP, Chen KK, Zhu JN, Guo XW, Zhang X, Zhao YW, Li JB,
- Huang D. Systemic immune inflammation index and system inflammation response index
- are potential biomarkers of atrial fibrillation among the patients presenting with ischemic
- 232 stroke. Eur J Med Res. 2022 Jul 2;27(1):106. doi: 10.1186/s40001-022-00733-9. PMID:
- 233 35780134; PMCID: PMC9250264.
- 234 11) Torsten Doenst, Michael A. Borger, Richard D. Weisel, Terrence M. Yau, Manjula
- Maganti, Vivek Rao, Relation between aortic cross-clamp time and mortality not as
- straightforward as expected, European Journal of Cardio-Thoracic Surgery, Volume 33,
- 237 Issue 4, April 2008, Pages 660–665, https://doi.org/10.1016/j.ejcts.2008.01.001
- 238 12) Argyris Michalopoulos, George Tzelepis, Urania Dafni, Stefanos Geroulanos,
- Determinants of Hospital Mortality After Coronary Artery Bypass Grafting, Chest,
- 240 Volume 115, Issue 6, 1999, Pages 1598-1603, ISSN 0012-3692,
- 241 https://doi.org/10.1378/chest.115.6.1598.

- 242 13) Jeffrey P. Schwartz, Mamdouh Bakhos, Amit Patel, Sally Botkin, Siyamek Neragi-
- 243 Miandoab, Repair of aortic arch and the impact of cross-clamping time, New York Heart
- Association stage, circulatory arrest time, and age on operative outcome, *Interactive*
- 245 CardioVascular and Thoracic Surgery, Volume 7, Issue 3, June 2008, Pages 425–
- 246 429, https://doi.org/10.1510/icvts.2007.164871
- 247 14) Urbanowicz TK, Michalak M, Gasecka A, Olasińska-Wiśniewska A, Perek B, Rodzki M,
- Bociański M, Jemielity M. A Risk Score for Predicting Long-Term Mortality Following
- Off-Pump Coronary Artery Bypass Grafting. J Clin Med. 2021 Jul 7;10(14):3032. doi:
- 250 10.3390/jcm10143032. PMID: 34300198; PMCID: PMC8305554.
- 251 15) Hajibandeh S, Hajibandeh S, Hobbs N, Mansour M. Neutrophil-to-lymphocyte ratio
- predicts acute appendicitis and distinguishes between complicated and uncomplicated
- appendicitis: A systematic review and meta-analysis. Am J Surg. 2020 Jan;219(1):154-
- 254 163. doi: 10.1016/j.amjsurg.2019.04.018. Epub 2019 Apr 27. PMID: 31056211.
- 255 16) Aydın C, Engin M. The Value of Inflammation Indexes in Predicting Patency of
- Saphenous Vein Grafts in Patients With Coronary Artery Bypass Graft Surgery. Cureus.
- 257 2021 Jul 26;13(7):e16646. doi: 10.7759/cureus.16646. PMID: 34462681; PMCID:
- 258 PMC8387011.
- 259 17) Li W, Ma G, Deng Y, Chen W, Liu Z, Chen F, Wu Q. Systemic Immune-Inflammation
- Index Is a Prognostic Factor for Breast Cancer Patients After Curative Resection. Front
- Oncol. 2021 Dec 1;11:570208. doi: 10.3389/fonc.2021.570208. PMID: 34926234;
- 262 PMCID: PMC8671143.
- 263 18) Balk RA. Systemic inflammatory response syndrome (SIRS): where did it come from and
- 264 is it still relevant today? Virulence. 2014 Jan 1;5(1):20-6. doi: 10.4161/viru.27135. Epub
- 265 2013 Nov 13. PMID: 24280933; PMCID: PMC3916374.

- 266 19) Day JR, Taylor KM. The systemic inflammatory response syndrome and cardiopulmonary
- bypass. Int J Surg. 2005;3(2):129-40. doi: 10.1016/j.ijsu.2005.04.002. Epub 2005 Aug 1.
- 268 PMID: 17462274.
- 269 20) Urbanowicz T, Michalak M, Olasińska-Wiśniewska A, Rodzki M, Witkowska A, Gasecka
- A, Buczkowski P, Perek B, Jemielity M. Neutrophil Counts, Neutrophil-to-Lymphocyte
- 271 Ratio, and Systemic Inflammatory Response Index (SIRI) Predict Mortality after Off-
- Pump Coronary Artery Bypass Surgery. Cells. 2022 Mar 26;11(7):1124. doi:
- 273 10.3390/cells11071124. PMID: 35406687; PMCID: PMC8997598.
- 274 21) Salis S, Mazzanti VV, Merli G, Salvi L, Tedesco CC, Veglia F and Sisillo
- E. Cardiopulmonary Bypass Duration Is an Independent Predictor of Morbidity and
- 276 Mortality After Cardiac Surgery. Journal of Cardiothoracic and Vascular Anesthesia.
- 277 2008;22:814–822.
- 278 22) Schmid FX, Vudattu N, Floerchinger B, Hilker M, Eissner G, Hoenicka M, Holler E and
- Birnbaum DE. Endothelial apoptosis and circulating endothelial cells after bypass grafting
- with and without cardiopulmonary bypass. Eur J Cardiothorac Surg. 2006;29:496–500.
- 281 23) Verrier ED and Morgan EN. Endothelial response to cardiopulmonary bypass
- surgery. Ann Thorac Surg. 1998;66:S17–9; discussion S25–8.
- 24) Weerasinghe A and Taylor KM. The platelet in cardiopulmonary bypass. Ann Thorac
- 284 Surg. 1998;66:2145–52.
- 285 25) Iino K, Miyata H, Motomura N, Watanabe G, Tomita S, Takemura H, Takamoto S.
- Prolonged Cross-Clamping During Aortic Valve Replacement Is an Independent Predictor
- of Postoperative Morbidity and Mortality: Analysis of the Japan Cardiovascular Surgery
- 288 Database. Ann Thorac Surg. 2017 Feb;103(2):602-609. doi:
- 289 10.1016/j.athoracsur.2016.06.060. Epub 2016 Sep 10. PMID: 27624296.

26) Robich M, Ryzhov S, Kacer D, Palmeri M, Peterson SM, Quinn RD, Carter D, Sheppard 290 291 F, Hayes T, Sawyer DB, Rappold J, Prudovsky I, Kramer RS. Prolonged Cardiopulmonary Bypass is Associated With Endothelial Glycocalyx Degradation. J Surg 292 293 Res. 2020 Jul;251:287-295. doi: 10.1016/j.jss.2020.02.011. Epub 2020 Apr 30. PMID: 32199337; PMCID: PMC7247933. 294 295 27) Aouifi A, Piriou V, Blanc P, Bouvier H, Bastien O, Chiari P, Rousson R, Evans R, Lehot 296 JJ. Effect of cardiopulmonary bypass on serum procalcitonin and C-reactive protein concentrations. Br J Anaesth. 1999 Oct;83(4):602-7. doi: 10.1093/bja/83.4.602. PMID: 297 10673877. 298 299 28) Berbel-Franco D, Lopez-Delgado JC, Putzu A, Esteve F, Torrado H, Farrero E, Rodríguez-Castro D, Carrio ML, Landoni G. The influence of postoperative albumin 300 levels on the outcome of cardiac surgery. J Cardiothorac Surg. 2020 May 11;15(1):78. 301 302 doi: 10.1186/s13019-020-01133-y. PMID: 32393356; PMCID: PMC7216430. 29) Eckart A, Struja T, Kutz A, Baumgartner A, Baumgartner T, Zurfluh S, Neeser O, Huber 303 304 A, Stanga Z, Mueller B, Schuetz P. Relationship of Nutritional Status, Inflammation, and Serum Albumin Levels During Acute Illness: A Prospective Study. Am J Med. 2020 305 Jun;133(6):713-722.e7. doi: 10.1016/j.amjmed.2019.10.031. Epub 2019 Nov 18. PMID: 306 31751531. 307 308 309 310 311

Table 1: Demographic and operative data of patients

Variables	Group I (n=54)	Group II (n=42)	p
Gender (Male)	35 (64,8%)	31 (73,8%)	
Age	63,6±8,8	66±8,9	0,189
BMI	28,3±4,1	27,9±3,5	0,677
BSA (m ²)	$1,84\pm0,17$	1,88±0,14	0,156
EF (%)	48,8±5,6	48,0±6,3	0,499
Euroscore II	7,9±4,6	8,6±4,2	0,454
CPB (min)	103,8±20	134,4±21,3	<0,001**
ACC (min)	51,7±10,7	89,9±13,0	<0,001**

BMI: Body Mass Index, BSA: Body Surface Area, EF: Ejection fraction, CPB: Cardiopulmonary Bypass, ACC: Aortic Cross Clamp, **p<0.001

Table 2: Preoperative and Postoperative Laboratory Parameters

		G	Group		
		Group I (n=54)	Group II (n=42)	_	
SIII				_	
Preoperative	Mean±SD	890,8±680,2	721,7±417,5	^d 0,404	
Postoperative	Mean±SD	2847,3±1626,6	2590,3±1354,1	^d 0,07	
	$^e p$	0,001**	0,001**		
SIRI					
Preoperative	Mean±SD	2,2±1,5	1,9±1,3	^d 0,520	
Postoperative	Mean±SD	15,8±9,4	17,2±9,8	^d 0,398	
	$^e p$	0,001**	0,001**		
Albümin					
Preoperative	Mean±SD	4,1±0,4	4,2±0,4	^b 0,224	
Postoperative	Mean±SD	3,5±0,3	3,4±0,4	^d 0,311	
	$^e p$	0,001**	0,001**		
CRP					
Preoperative	Mean±SD	2,2±2,3	3,0±1,2	^d 0,001**	
Postoperative	Mean±SD	9,2±2,8	8,0±3,9	^b 0,104	
	$^e p$	0,001**	0,001**		

SIII; systemic immun inflamation index, SIRI; systemic immun response index, CRP; C-reactive protein, ^bStudent-t Test, ^dMann-Whitney-U Test, ^ePaired Samples t-Test, **p<0,001

Table 3: Correlation between variables

Vowiehles		Postoperative	Postoperative	Postoperative	Postoperative
Variables		SIII	SIRI	Albümin	CRP
СРВ	r	0,001	0,052	-0,174	-0,098
	p	0,990	0,613	0,09	0,342
ACC	r	-0,007	0,154	-0,131	-0,138
	p	0,947	0,134	0,203	0,181
Postoperative	r	0,240	0,160	-	-0,028
Albumin	p	0,019*	0,118	-	0,783
Postoperative	r	-0,078	-0,045	-0,028	-
CRP	p	0,452	0,662	0,783	-

CPB; Cardiopulmonary bypass, ACC; Aortic cross clamp, CRP; C-reactive protein, SIII; systemic immun inflamation index, SIRI; systemic immun response index

Figure 1: SIII change according to groups

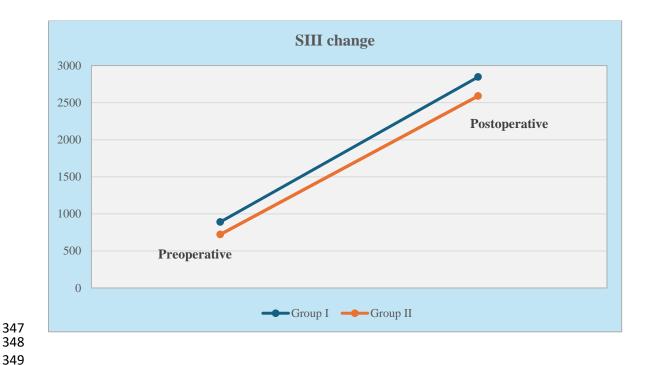
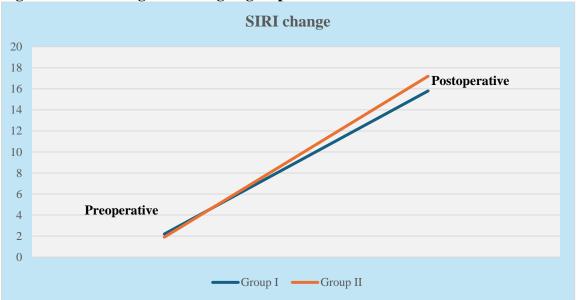



Figure 2: SIRI change according to groups

