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Purpose Integrating the SVRTK methods within the Gadgetron frame-

work enables automated 3D fetal brain and body reconstruction in the

low-field 0.55T MRI scanner within the duration of the scan.

Methods A deep-learning based, integrated, robust, and deployable work-

flow from several motion-corrupted individual T2-weighted single-shot

Turbo Spin Echo stacks to produce super-resolved 3D reconstructed fetal

brain and body is enabled by combining automated deformable and rigid

Slice-to-Volume (D/SVR) reconstruction adapted for low field MRI with

a real-time scanner-based Gadgetron workflow. Qualitative evaluation of

the pipeline in terms of image quality and efficiency is performed in 12

prospectively acquired fetal datasets from the 22-40 weeks gestational age

range.

Results The reconstructions were available on average 6:42±3:13 minutes

after the acquisition of the final stack and could be assessed and archived

on the scanner console during the ongoing fetal MRI scan. The output

image data quality was rated as good to acceptable for interpretation.

The additional retrospective testing of the pipeline on 83 0.55T datasets

demonstrated stable reconstruction quality for low-field MRI.

Conclusion The proposed pipeline allows scanner-based prospective

motion correction for low-field fetal MRI. The main novel components of

this work are the compilation of automated fetal and body D/SVR meth-

ods into one combined pipeline, the first application of 3D reconstruction

methods to 0.55T T2-weighted data, and the online integration into the

scanner environment.
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1 INTRODUCTION

Fetal MRI is an increasingly used adjunct to ultrasound

for improved diagnostic accuracy in certain conditions1

as well as providing a detailed characterisation of normal

and abnormal fetal development2,3.

Fast acquisition protocols such as T2-weighted (T2w)

Half-Fourier Acquisition single-shot Turbo Spin Echo

(ssTSE) provide high in-plane 2D image quality4. How-

ever, unpredictable fetal motion remains the main limit-

ing factor in both 2D in-plane artifacts and information

content related to the loss of 3D structural continuity.

Currently, retrospective motion correction performed in

the image domain5 has proven to be the most effective

solution for structural fetal MRI. Yet, these methods are

still primarily in the research stage. Wider integration

into diagnostic practice would require a comprehensive

formal evaluation of added clinical value as well as

optimisation of approaches for deployment directly into

clinical settings.

1.1 Image-domain 3D reconstruction
for fetal MRI

Image-domain motion correction for fetal MRI is

based on slice-to-volume registration (SVR) and super-

resolution for the reconstruction of high-resolution 3D

isotropic images from multiple motion-corrupted stacks

acquired under different orientations. Originally pro-

posed over a decade ago for the fetal brain6, these meth-

ods evolved into fast deep-learning automated pipelines

for the whole fetus.

In addition to the SVR step, the main compo-

nents of these motion correction methods include super-

resolution reconstruction7, intensity matching, and reg-

ularisation and rejection of outliers8. While brain recon-

struction relies only on rigid registration, motion correc-

tion for the fetal body (trunk) requires deformable slice-

to-volume registration (DSVR) due to the presence of

non-rigid motion9,10. Several works also proposed solu-

tions for automated slice and stack quality assessment

and its impact on reconstruction quality11,12,13,14.

More recent research directions primarily focus on

using deep learning for the automation of masking,

pose estimation, registration, and super-resolution recon-

struction. Automation of masking of the fetal brain15

and body13 resulted in fully automatic reconstruction

pipelines without manual input. Various pose estimation

solutions16,17,18,13 allow both reorientation of the fetal

brain and body to the standard space and correction

Abbreviations: MRI, magnetic resonance imaging

SVR, slice-to-volume registration

of extreme rotation motion for improved reconstruction

quality. Deep learning-based registration and super-

resolution reconstruction reportedly result in improved

image quality and faster performance19,10,20.

1.2 Integration into scanner
environment

Integrating image reconstruction and analysis workflows

into clinical processes is crucial for translation and

to be able to test such image processing pipelines in

broader patient populations. However, challenges that

hinder wider clinical adoption remain: many published

algorithms do not include source code or rely on propri-

etary accessory code (e.g., vendor-provided), hindering

reproducibility. Furthermore, integration into the clinical

workflow requires modification of the normal vendor-

provided reconstruction pipelines and often requires

high-performance computing (GPU) resources.

Several fetal MRI research works reported scanner-

based solutions for real-time brain tracking21 and

automated detection and re-acquisition of low-quality

slices22. Both solutions implemented interaction between

the scanner and external GPU-accelerated research

reconstruction workstations.

Existing SVR reconstruction methods are performed

offline after the fetal scan is completed (i.e., using down-

loaded NIfTI or DICOM files) in research facilities and

there have been no proposed solutions integrated directly

into the scanner environment. This is one of the factors

limiting the application of 3D fetal reconstruction for

clinical reporting.

Gadgetron has been developed as an open-source,

modular software platform for sending and retrieving

data to/from the scanner reconstruction environmen-

t/an external server, respectively. This provides a flexible

environment for implementing and executing various

image reconstruction and processing algorithms while

exploiting the computing power of external servers. The

Gadgetron framework has successfully facilitated the

integration of several image reconstruction and analysis

pipelines into scanner environments, allowing cloud-

based reconstruction of free-breathing motion-corrected

cine images, quantification of myocardial perfusion, and

in-line segmentation of cardiac cavities, among many

others23,24,25,26.

1.3 Fetal MRI at low field strength

Traditionally performed at 1.5T and 3T, low-field fetal

MRI at 0.55T is a re-emerging27 modality for fetal imag-

ing. The increased homogeneity of the magnetic field
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decreases magnetic susceptibility artifacts frequently

found between the fetal brain and the maternal bowel

and thereby also the need for specialist shimming tools as

commonly used on higher field28. Furthermore, emerg-

ing commercial 0.55T scanners offer the benefit of a

larger bore size - enabled by the reduced field strength

requirement - significantly widening access to fetal MRI.

However, the drawback of reduced signal-to-noise ratio

has to be taken into account when developing low-field

specific techniques.

Recent works29,30 demonstrated the general feasibil-

ity of 0.55T MRI for brain and body imaging as well as

several examples of fetal brain SVR reconstruction and

functional fetal brain and body data reconstruction31,32.

Yet, there has been no extensive evaluation of D/SVR

performance (or dedicated solutions) to confirm the gen-

eral feasibility of using 3D reconstruction at 0.55T on a

large scale.

1.4 Contributions

This work integrates a 3D brain+body D/SVR recon-

struction pipeline for T2w structural low field 0.55T fetal

MRI integrated directly into the scanner environment

and makes the final 3D reconstructions available during

the ongoing fetal scan. It combines our previous works

on automated 3D SVR reconstruction13,32 with a real-

time integrated scanner workflow21,33. In the context of

this work, real-time integration refers to the triggering

of the SVR reconstruction process immediately upon the

acquisition of the last T2w stack, with retrieval of the

resulting volume in the duration of the scan.

The reconstruction pipeline is based on the classi-

cal methods from SVRTK∗ toolbox with deep learning

automation based on MONAI tools34. It is deployed into

the scanner environment via Gadgetron† with the pro-

cessing being launched directly from specific sequences

during the scanning session. The resulting 3D recon-

structed files are sent back to the scanner.

The feasibility of the proposed automated D/SVR

reconstruction pipeline is evaluated (both quantita-

tively and qualitatively) on 83 retrospective 0.55T T2w

datasets. Evaluation of the scanner deployment is based

on real-time (in utero) testing on 12 prospective cases in

terms of general operability, time, quality of the results,

and operator experience.

∗SVRTK toolbox repository: https://github.com/SVRTK/SVRTK
†Gadgetron repository: https://github.com/gadgetron/gadgetron

2 METHODS

In this automated workflow, via Gadgetron, the ssTSE

images are exported to an external GPU-accelerated

server (”Gadgetron server”) in real-time and converted

to NIfTI format. Upon the collection of all ssTSE stacks,

a 5-second dummy sequence is run with the sole purpose

of launching the SVR docker container on the Gad-

getron server. Once the D/SVR results are available,

short dummy sequences are added to the exam card to

pull the resulting volumes to the MRI scanner and store

them in the medical image database. This workflow not

only allows D/SVR to be run for all patients scanned

in the low-field scanner automatically and immediately,

with results stored in the database alongside the acquired

images, but it also reduces the workload on radiographers

and researchers who run the processing pipeline offline

post-scan. An overview of these steps is given in Fig. 1

and all individual steps will be outlined in detail below.

2.1 Datasets, Acquisition

The fetal MRI data used in this study were acquired

at St.Thomas’ Hospital, London as part of the ethi-

cally approved MEERKAT [REC: 21/LO/0742], MiBirth

[REC: 23/LO/0685] and NANO [REC: 22/YH/0210]

studies. All experiments were performed in accordance

with relevant guidelines and regulations. Informed writ-

ten consent was obtained from all participants.

The acquisitions were performed on a contempo-

rary clinical 0.55T scanner (MAGNETOM Free.Max,

Siemens Healthcare, Erlangen, Germany) with 6-element

flexible coil (BioMatrix Contour Coil, Siemens Health-

care, Erlangen, Germany) and a 9-element spine coil

built into the patient table. The structural T2w stacks

were acquired using a dedicated ssTSE sequence opti-

mised for fetal imaging at 0.55T (low-field)29 with TR

= 1460–2500 ms, TE = 105–106 ms, 1.48 mm in-plane

resolution, 4.5 mm slice thickness. Each dataset includes

6-12 stacks covering the whole uterus, brain, and trunk

regions using standard radiological orientations. The

stacks were acquired in consecutive order without time

gaps or changes in the maternal position.

The 0.55T datasets used in this work were acquired

between 2022 and 2024 and cover 20-40 weeks gestational

age (GA) range (Fig. 2 ) including:

• the CNN training cohort: 384 stacks from 62 fetal

datasets from 20-39 weeks GA range acquired

during 05/2022-01/2023 period;

• the retrospective evaluation (quantitative and

qualitative) cohort: 83 fetal datasets from 22-39
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FIGURE 1 Proposed pipeline for the integration of 3D brain and body D/SVR reconstruction into scanner environment

via Gadgetron. (A) Infrastructure setup. (B) Three-step process and flow of images and volumes between the scanner, during

the acquisition of the single-shot Turbo Spin Echo scans in coronal, axial and sagittal orientations, the Gadgetron server, and

the SVR container within the Gadgetron server.

FIGURE 2 GA distributions of the 0.55T datasets used in this work for the training of the convolutional neural network

(CNN), retrospective image quality evaluation, and real-time testing.

weeks GA range acquired during 02/2023-08/2023

period;

• the real-time testing cohort: 12 fetal datasets from

22-40 weeks GA range acquired during 01/2024-

02/2024 period.

The main selection criteria for the retrospective test-

ing cases were singleton pregnancy, > 22 weeks GA,

no significant structural fetal pathologies, good in-plane

image contrast with high signal-to-noise ratio (SNR),
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clear visibility of the whole fetus, and no breaks dur-

ing ssTSE acquisition. This is a heterogeneous cohort

with the maternal body mass index (BMI) varying

between 22-43, different placental and fetal findings,

and varying volume of amniotic fluid. Out of 88 origi-

nally inspected retrospective evaluation datasets, only 4

(5%) were excluded due to suboptimal image quality in

the majority of stacks with severe in-plane signal loss

caused by shading, extreme motion artifacts, or other

acquisition-related factors. These cases were excluded

because there was not enough image information (i.e.,

good-quality slices) for 3D SVR reconstructions. Further-

more, we did not include cases below 22 weeks due to the

small size of the fetal organs compared to the intrinsic

large slice spacing and resolution in 0.55T datasets that

would be expected to compromise output reconstruction

quality.

2.2 3D image-domain reconstruction

The proposed automated pipeline for combined 3D

brain+body D/SVR reconstruction is summarised in

Fig. 3 . This is an extension of our previous work for

automated 3D reconstruction of the fetal brain and

thorax13,32 with both brain and body regions of inter-

est (ROIs) trained on 0.55T datasets using MONAI

network implementations. It includes global 3D locali-

sation of the brain and trunk in all stacks, followed by

landmark-based reorientation to the standard radiologi-

cal space, template selection, and classical rigid SVR and

DSVR reconstruction. An additional reorientation step

is applied to the final reconstructed images for refined

alignment.

2.2.1 Global localisation

Similarly to Uus et al.13, the global localisation step

is based on a 3D UNet35 segmentation of brain and

body (trunk) labels (Fig. 3 .A) that has already proven

to be efficient for higher field strength fetal MRI. We

used the classical MONAI34 implementation and the net-

work was trained on 384 stacks from 62 0.55T datasets

with GA range 20-39 weeks, using standard augmen-

tation (affine rotations, bias field, contrast adjustment,

Gaussian noise) for 50 000 iterations. The labels for the

training datasets were created semi-automatically based

on manual refinement of the outputs of the existing

network from13.

2.2.2 Reorientation to the standard space

Reorientation of the brain and body ROIs to the same

canonical space of all stacks is an essential step to

account for large rotation motion that cannot be cor-

rected by classical registration. There have been many

proposed alternative deep learning solutions for the

reorientation of 2D fetal brain slices to the standard

radiological space16,17,18. In this work, we employ the

existing pipeline for the fetal brain and thorax from our

previous works13,32 based on 3D landmarks for global

3D reorientation in raw stacks.

After global localisation, the stacks are cropped to the

brain and body ROIs and passed to the 3D landmarks

segmentation networks (Fig. 3 . B). We selected 4 body

landmarks (thorax, abdomen, heart, liver) and 4 brain

landmarks (anterior brain, posterior brain, deep grey

matter, cerebellum+brainstem). We used the classical

3D UNet implementations in MONAI for both networks.

The body landmark network was trained on 173 0.55T

cropped stacks with varying orientations and degrees of

motion. The landmark labels for the training datasets

were created manually. The brain landmark network

was trained on 195 0.55T cropped stacks with vary-

ing orientations and degrees of motion. The labels were

created using a semi-supervised approach as manually

refined outputs from a separate in-house network pre-

trained on fused Draw-EM labels from fetal dHCP data

release ‡. Training included standard MONAI augmen-

tation (affine rotations, bias field, contrast adjustment,

Gaussian noise).

Next, the segmented landmarks are used for reorien-

tation to the standard radiological space using classical

point-based registration between centre points in the

landmarks in stacks and atlases.

2.2.3 3D D/SVR reconstruction

After reorientation, the ROI cropped and reoriented

stacks are passed to the stack-selection 13 SVRTK func-

tion that performs additional rigid registration followed

by template selection and rejection of outlier stacks based

on a combination of normalized cross-correlation similar-

ity and motion corruption metrics. The outputs are then

used to create averaged 3D brain and body templates

and the corresponding masks.

Next, the selected stacks and average ROI templates

with masks are passed to the optimised rigid SVR8 and

DSVR9 functions for 3D brain and body reconstruc-

tions (Fig. 3 . C). The rigid SVR function reconstructs

‡dHCP fetal MRI data release: https://www.

developingconnectome.org/project/
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6 Uus A. U., Neves Silva S. et al.

FIGURE 3 Proposed automated combined 3D brain+body D/SVR reconstruction pipeline for T2w 0.55T fetal MRI

including: (A) global 3D localisation in motion-corrupted stacks; (B) 3D reorientation to the standard space; (C) average

template creation and D/SVR reconstruction.

the large background ROI (in order to account for any

mask imperfections) with the registration, bias correc-

tion, rejection of outliers, and intensity matching steps

based on the brain mask ROI only. The optimised

DSVR function is based on combined rigid+deformable

slice-to-volume registration. Both DSVR and SVR recon-

struction functions include an additional structure-based

outlier rejection step9. Taking into account the native

stack resolution (1.2 x 1.2 x 4.5 mm), the output reso-

lution for 3D reconstructed images was selected as 1.0

mm.
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2.2.4 Implementation details

The deep learning modules were implemented based

on MONAI§ framework. We used classical 3D UNet35

architecture with five encoder-decoder blocks (output

channels 32, 64, 128, 256, and 512), convolution and an

upsampling kernel size of 3, ReLU activation, dropout

ratio of 0.5, batch normalisation, and a batch size of

2. We employ an AdamW optimiser with a linearly

decaying learning rate, initialised at 1x10-3, default beta

parameters, and weight decay 1x10-5.

All pipeline components (deep learning and C++

reconstruction) are combined into one bash script. The

code for the proposed brain and body reconstruction

pipeline is publicly available at auto-proc-svrtk SVRTK

GitHub repository¶.

The proposed 0.55T 3D D/SVR reconstruction

pipeline is publicly available as a standalone docker

application available at SVRTK docker repository# that

includes all required software installations as well as the

network weights. The docker is fully CPU-based and is

executed on the CPU for straightforward deployment

purposes. The recommended minimum docker settings

are > 20 GB RAM and 8 CPUs.

2.2.5 Evaluation metrics

The evaluation of the proposed D/SVR pipeline is based

on a set of retrospective datasets. The quantitative

evaluation is based on the localisation distance and reori-

entation rotation errors and label Dice. The quality

scores for the output 3D D/SVR reconstructed images

are: 1 - failed; 2 - poor, 3 - acceptable, 4 - good (similarly

to the grading scheme in5).

2.3 Gadgetron-based scanner D/SVR
deployment

The entire online pipeline was implemented using Gad-

getron. As in routine fetal MRI research and clinical

protocols, T2w ssTSE data is acquired in 6 to 9 differ-

ent orientations, planned according to maternal habitus

and the fetal brain. As described above in Fig. 3

Step 1, the reconstructed stacks are exported to the

dedicated GPU-equipped Gadgetron server immediately

after acquisition, and D/SVR reconstruction is sub-

sequently performed, triggered by a 5-second dummy

§MONAI framework repository: https://github.com/

Project-MONAI/MONAI
¶SVRTK auto-proc-svrtk repository: https://github.com/

SVRTK/auto-proc-svrtk
#SVRTK auto D/SVR reconstruction docker: https://hub.docker.

com/r/fetalsvrtk/svrtk; tag general auto amd)

sequence. The total reconstruction time is approximately

6:42±3:13 minutes, and the results are available imme-

diately on the scanner console.

2.3.1 Automated D/SVR activation

After all ssTSE stacks are acquired, a 5-second ’launch’

sequence is run as part of the protocol (Fig. 3 Step 2).

This establishes a connection between the scanner and

the server and launches the SVR docker container on the

server. An external-language interface Python Gadget

was utilized to define this task and run it as a sub-

process, allowing the acquisition and reconstruction of

the subsequent sequences in the exam card. The acquired

data from the launch sequence is discarded. The final

reconstructions for the body and brain are written in

NIfTI format to the Gadgetron server.

2.3.2 Transfer of results to scanner

As a last step to bring the D/SVR reconstruction to the

scanner host in a controlled way (ensuring that the recon-

struction does not interfere with the scanning process),

two fast ’pull’ sequences are run towards the end of the

protocol (24 seconds for pulling the brain volume and

1:03 minutes for the body volume). A modified, highly

accelerated MP-RAGE sequence is employed for this

purpose with the matrix size matched to the expected

reconstruction. All brain reconstructions are resampled

to an image matrix of 128x128x128 (128 slices) and the

body reconstructions to 256x256x256 (256 slices) prior

to this step - resampling facilitates the retrieval of the

volumes in the scanner as having all brain/body recon-

structed volumes with the same dimensions allows to

keep the same field-of-view in the pulling sequences with-

out compromising the quality of the results (e.g., cropped

structures, missing slices). Similar to the sequence used

to launch the docker, the purpose of these sequences is

to establish the connection to the external server. In this

connection, a Python Gadget was configured to disregard

and overwrite the acquired data with the 3D SVR result-

ing volume matrices. Once the SVR volume is injected

into the vendor image reconstruction chain and accessible

by the scanner host, it is exported to the medical image

database system alongside the acquired ssTSE images

that were utilized to produce the reconstructed volume.

2.3.3 Implementation details

The Gadgetron framework was installed on the dedicated

external server and connected to the internal network

of the MRI scanner. On the scanner side, the sequences
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were modified to link to the Gadgetron by inserting

emitter and injector functors into the scanner processing

pipeline. This allows the data to bypass specific sections

of the pipeline by sending the raw data to the external

server for processing (emitter functor) and receiving the

image data (injector functor) with the integration of the

image back into the scanner pipeline. Configuration files

that specify crucial parameters such as the algorithms

to be used during pipelines were created and stored in

the scanner host to be accessed by the sequence. Addi-

tionally, the configuration files within the Gadgetron

framework were developed for the real-time reconstruc-

tion and processing tasks and stored in the external

server to be accessed when a connection to the server was

established. For each of the three tasks presented in this

work, a pair of configuration files was created - the con-

figuration file stored in the scanner host, defined by the

sequence, points to the reconstruction/processing con-

figuration file that is stored in the external server. This

file assembles the reconstruction and processing Gadgets

the data streams through, including the Python-scripted

external-language interface Gadgets that were developed

for each task described in this work.

The code for the proposed Gadgetron-based D/SVR

scanner integration for 0.55T fetal MRI is publicly

available at gadgetron-svrtk-integration SVRTK GitHub

repository∥.

3 RESULTS

The proposed Gadgetron-deployed brain+body D/SVR

reconstruction pipeline was evaluated on 83 retrospective

0.55T datasets and with (in utero) prospective real-time

testing of the integration step on 12 cases.

3.1 Retrospective testing

3.1.1 Global localisation and reorientation

The results of the quantitative evaluation of the global

brain and body localisation and reorientation on 30

datasets (with 60 stacks in total) within the 22-39 weeks

GA range are presented in Tab. 1 . The selected stacks

have varying uterus and fetal acquisition planes. An eval-

uation was performed vs. manually created ground-truth

3D labels. Similarly to13, the 3D UNet showed robust

performance for both brain and body with relatively high

Dice and average 6.067 ± 1.950 (brain) and 7.836 ± 3.027

(body) mm centre point distance errors for both early

∥SVRTK gadgetron-svrtk-integration repository: https://github.

com/SVRTK/gadgetron-svrtk-integration

and late GA ranges. The proposed 3D localisation net-

work ensures continuity of the individual labels in 3D

space that does not require additional post-processing

in comparison to the conventional 2D slice-wise fetal

brain nnUNet approach15. The quantitative evaluation

of the reorientation of the brain and body to the standard

radiological space was performed compared to the man-

ually reoriented images. The landmark-based approach

showed robust performance for both brain and body with

11.947±6.626 (brain) and 15.549±12.487 (body) degree

rotation error ranges, which is an acceptable range for

a classical registration method (Sec. 2.2.2). The higher

rotation error for early GA datasets is due to the lower

visibility of landmarks.

3.1.2 3D D/SVR reconstruction

Evaluation of the automated D/SVR 0.55T reconstruc-

tion results was performed qualitatively on 83 datasets

(not used in training) for both brain and body (AL, MH,

AU) based on the quality scores defined in Sec. 2.2.5.

The results in Fig. 4 .A-B demonstrate that the pipeline

has relatively stable performance with acceptable and

good reconstruction quality for both brain and body in

the predominant (>85%) proportion of the datasets. The

lower quality grades were in the early (due to small size)

and late GA range (due to the lower cortical and tis-

sue organ contrasts) and severe motion corruption cases

with a high proportion of in-plane signal loss. Notably,

the 0.55T reconstructed image quality is inherently lower

(in terms of sharpness of features and tissue interfaces)

vs. normal 1.5-3T results due to the expected difference

in the original stack data quality.

The main aims of this work are the general feasi-

bility study for 0.55T and scanner-based integration of

classical 3D reconstruction and do not include a detailed

comparison with a large number of the recently pro-

posed novel SVR approaches, i.e., other methods can be

interchanged and deployed on the scanner in a similar

format. The examples in Fig. 5 .A show a compari-

son between offline auto-SVRTK and the recent deep

learning state-of-the-art GPU-based brain reconstruc-

tion NeSVoR method19 on five 22-38 weeks GA cases,

performed retrospectively. The outputs of both methods

have similar global features but the tissue signal tex-

ture in SVRTK-reconstructed images is smoother but

less noisy than in the NeSVoR results. This is potentially

related to the differences in super-resolution reconstruc-

tion and regularisation methods as well as the lower

SNR and resolution of 0.55T datasets. NeSVoR outputs

cover of the brain ROI with a tight mask but SVRTK

allows reconstruction of the background ROI. The aver-

age reconstruction time per case (with 9 stacks and
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TABLE 1 Retrospective quantitative evaluation of global localisation and reorientation to the standard space (B) on 30

datasets with 60 stacks in terms of Dice, localisation distance error (mm), and rotation error (degrees).

GA [weeks] Dice Distance error [mm] Rotation error [degree]

Brain ROI

22-25 0.848 ± 0.046 5.819 ± 1.639 14.679 ± 6.009

26-31 0.879 ± 0.034 5.597 ± 1.702 10.706 ± 6.950

32-39 0.895 ± 0.026 6.783 ± 2.321 10.456 ± 6.331

Body ROI

22-25 0.852 ± 0.028 6.569 ± 2.840 20.954 ± 13.166

26-31 0.840 ± 0.030 8.441 ± 2.617 15.140 ± 14.164

32-39 0.854 ± 0.031 8.498 ± 3.316 10.554 ± 7.286

1 mm output resolution; default settings; on the same

machine) was also within the similar range: 6-10 minutes

(depending on GA) for auto-SVRTK and 9-10 minutes

for NeSVoR (Fig. 5 .B).

3.2 Gadgetron-based scanner D/SVR
deployment

The 12 prospective cases all led to the motion-corrected

super-resolved 3D reconstructions available on the scan-

ner console during the fetal MRI scan, to view using

all visualization options and to be archived with all

acquired data at the end of the acquisition. The output

image quality graded by 2 clinicians was within accept-

able to good range. The launch and pull sequences on the

protocol were moved freely by the radiographer perform-

ing the scan, with the launch sequence being acquired

when a sufficient number of slices was obtained and the

pull sequences performed after subsequent long diffusion

sequences were acquired, at the end of the entire scan.

Figure 6 A-C illustrates such a setup with the corre-

sponding reconstructions for the brain (green boxes) and

body (blue boxes). The time between the launch and

the availability of the reconstruction for the brain was,

on average, 7.23 minutes (median 6.39 min, std=3.03

min) and for the body 6.50 minutes (median 6.41 min,

std=1.27 min), depending on the number of stacks, sub-

ject GA and computational system load. On average, no

correlation of the processing time against BMI, GA or

the number of stacks was observed (See Figure 6 D-F).

4 DISCUSSION

In this work, we designed and implemented the first

pipeline for automated 3D D/SVR combined recon-

struction of the fetal brain and body T2w at low-field

MRI deployed on 0.55T scanner via Gadgetron resulting

in motion-corrected 3D reconstructions being available

on the scanner console during the examination. The

main novel components are hence the compilation of

fetal brain+body D/SVR methods into one combined

pipeline, application of 3D image-domain reconstruction

methods to low-field fetal MRI and integration into the

scanner environment.

Quantitative and qualitative evaluation of the pro-

posed automated D/SVR pipeline optimised for T2w

0.55T data on 83 retrospective cases demonstrated gen-

eral suitability of using 3D reconstruction methods

for low-field MRI. It also showed comparable perfor-

mance with the most recent state-of-the-art deep leaning

TABLE 2 Demographics and results for the prospective

cases. Time refers to the time from the launch of the

reconstruction on the scanner after the acquisition of the

last ssTSE stack to the reconstruction being readily

available on the scanner console computer. GA=

Gestational Age, BMI= Body Mass Index, T1DM=Type 1

Diabetes Mellitus, IBD=Inflammatory Bowel Disease,

CDH=Congential diaphragmatic hernia, PPROM =

Preterm prolonged rupture of the membranes

GA BMI Brain Body Stacks

[weeks] [kg/m2] [min] [min]

1-healthy 37.71 25.17 07:05 - 6

2-healthy 37.42 33.80 08:42 - 6

3-healthy 35.7 29.0 05:29 - 6

4-T1DM 21.57 30.92 03:37 - 6

5-healthy 33 29.2 10:36 - 6

6-IBD 29.3 25.1 04:52 - 6

7-healthy 39.85 38.09 06:48 - 6

8-healthy 38.85 25.71 15:28 - 6

9-Fibroids 35.85 26.73 06:54 07:26 9

10-CDH 26.57 39.79 05:07 05:25 10

11-healthy 36 29.83 05:01 08:35 6

12-PPROM 24.14 38.16 05:55 05:56 13
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FIGURE 4 Retrospective qualitative evaluation of the brain (A) and body (B) reconstruction quality on 83 0.55T datasets

from 22 - 39 GA range.

method for the fetal brain19 in terms of both reconstruc-

tion quality and time. This suggests that the majority of

the currently available SVR methods are generally inter-

changeable and that the SVR reconstruction quality is

primarily defined by the input MRI data.

This prototype automated pipeline also allowed inte-

gration of D/SVR methods directly into the scanner

environment enabling 3D reconstructions to be visu-

alised on the scanner console during the examination.

The results of real-time in-utero prospective testing on

12 cases confirmed the robustness of the method, no

interference with the scan acquisition and the ability

to achieve good data quality. The 3D brain reconstruc-

tion from 6 stacks was available on the console within 7

minutes on average, and only one case took > 10 min-

utes, which was related to a general slowed-down console

computer on this day.

Limitations and future work

Since the primary aims of this work are the general

D/SVR feasibility assessment for 0.55T and real-time

integration we did not include an assessment of the

pipeline performance on the extreme motion and signal

loss datasets. In clinical practice, these cases normally

represent only a small proportion of datasets and should

potentially be addressed by real-time acquisition quality

control since the lack of original 2D slice image informa-

tion will make any 3D reconstructed images unreliable

by definition.

Our future work will also focus on detailed technical

formalisation of the minimum input image requirements

and an automated real-time stack quality classification

module that could also provide active guidance for the

re-acquisition of motion corrupted stacks22.

One of the potential limitations of this work is

the reliance on the classical D/SVR methods for the

reconstruction part and the expected sensitivity of the
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FIGURE 5 Examples of 3D auto-SVRTK vs. NeSVoR19 brain reconstructions (A) and total reconstruction time vs. GA (B).

landmark reorientation method to low-quality stacks.

Even though the full pipeline is operational, integra-

tion of more advanced deep learning super-resolution

reconstruction and pose estimation methods19 would be

beneficial for robust performance for severe motion cor-

ruption cases. This will be addressed in our future work

based on a thorough investigation of the optimal D/SVR

reconstruction pipeline modules for structural MRI along

with the extension with automated organ parcellation36

for volumetry reporting during scanning. Furthermore,

we will explore solutions for deep learning image recov-

ery specific for datasets with severe signal and contrast

loss.

The fact that the proposed structure of the

Gadgetron-based scanner deployment relies on the exter-

nal launch of the D/SVR docker application can also be

considered a form of limitation since the activation and

the transfer of results back to the scanner rely on the file

availability logic. One of the possible solutions could be

based on more advanced integration of the reconstruction

code into the Gadgetron interface: e.g. dynamic mask-

ing, reorientation21 and sequential addition of stacks to

the reconstruction function.

While implemented here for a 0.55T system from one

vendor, generalisation of the pipeline for other systems

operating at 1.5-3T field strengths from a wider range

of vendors is a logical next step, supported by the use

of open-source tools at every step other than the MR

sequence itself.

Another essential aspect is the qualitative assess-

ment of 3D D/SVR images at 0.55T in terms of added

diagnostic value and image quality limitations. This

will require a wider clinical analysis of brain and body

reconstructions along with a comparison to 1.5-3T data.
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FIGURE 6 Results of the real-time deployment. (A) Screenshot of the end of the scanning protocol with the pull

sequences. (B-C) Resulting brain (green box) and body (blue box) reconstructions on the scanner console during the MR

scan for two cases. (D-F) Quantitative assessment of the time required for the online reconstructions against GA at scan,

BMI and number of stacks. (G) Box plots illustrating the spread in time till the reconstruction was available online.

5 CONCLUSIONS

This study shows the feasibility of a real-time scanner-

integrated solution for 0.55T fetal brain and body 3D

reconstruction. The initial step towards integration of 3D

D/SVR reconstruction methods directly into the clinical

environment has been developed and has the potential to

enable straightforward processing and reporting of fetal

MRI scans. Our future work will focus on further opti-

misation and integration of the D/SVR reconstruction

and image quality control into the scanner environment

for real-time processing.
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