${ }_{1}$ A Breast Cancer Polygenic Risk Score Validation in 15,490 Brazilians ${ }_{2}$ using Exome Sequencing

3

4 Flávia Eichemberger Rius ${ }^{1,2}$, Rodrigo Guindalini ${ }^{3}$, Danilo Viana ${ }^{1}$, Júlia Salomão ${ }^{1}$, ${ }_{5}$ Laila Gallo ${ }^{1}$, Renata Freitas 1, Cláudia Bertolacini ${ }^{1}$, Lucas Taniguti ${ }^{1}$, Danilo 6 Imparato 1, Flávia Antunes ${ }^{1}$, Gabriel Sousa ${ }^{1}$, Renan Achjian ${ }^{1}$, Eric Fukuyama ${ }^{1}$, ${ }_{7}$ Cleandra Gregório 1, Iuri Ventura ${ }^{1}$, Juliana Gomes 1, Nathália Taniguti ${ }^{1}$, Simone 8 Maistro², José Eduardo Krieger ${ }^{4}$, Yonglan Zheng ${ }^{5}$, Dezheng Huo ${ }^{6}$, Olufunmilayo I. , Olopade ${ }^{5}$, Maria Aparecida Koike ${ }^{2}$, David Schlesinger ${ }^{1}$

12 2. Comprehensive Center for Precision Oncology - C2PO, Centro de Investigação

17 4. Instituto do Coração, Hospital das Clínicas da Faculdade de Medicina da

19 5. Medicine and Human Genetics, Center for Clinical Cancer Genetics and Global
6. Department of Public Health Sciences, University of Chicago, Chicago, USA.
${ }_{23}$ Abstract
${ }_{24}$ Purpose

25 Brazil has a highly admixed population. Polygenic Risk Scores (PRS) have been mostly
26 developed from European population studies and applying them to other populations is 27 challenging. To assess the use of PRS for breast cancer (BC) risk in Brazil, we validated 28 four PRSs developed in the Brazilian population.

${ }_{29}$ Patients and Methods

30 We analyzed 6,362 women with a history of breast cancer and 9,128 unphenotyped ${ }_{31}$ adults as controls in a sample obtained from a clinical laboratory. Genomic variants 32 were imputed from exomes and scores were calculated for all samples.

33

Results

34 After excluding individuals with known pathogenic or likely pathogenic variants in 35 BRCA1, BRCA2, PALB2, PTEN, or TP53, and first-degree relatives of the probands, 365,730 cases and 8,847 controls remained. Four PRS models were compared, and PRS 373820 from Mavaddat et al. 2019 performed best, with an Odds Ratio (OR) of 1.41 per 38 standard deviation (SD) increase (p-value: < 0.0001) and an OR of 1.94 (p-value: < 390.0001) for the individuals in the top risk decile. PRS 3820 also performed well for 40 different ancestry groups: East Asian majority (Group 1), Non-European majority (Group 41 2), and European majority (Group 3), showing significant effect sizes for all groups: 42 (Group 1: OR 1.54, p-value 0.006; Group 2: OR 1.44, p-value: <0.001; Group 3 OR:

43 1.43, p-value: <0.001). PRS 90\% compares with monogenic moderate BC risk genes 44 (PRS90 OR: 1.94; CHEK2 OR: 1.89; ATM OR: 1.99).

45 Conclusion

46 PRS 3820 can be accurately used in the Brazilian population. This will allow a more 47 precise BC risk assessment of mutation-negative women in Brazil.

48

Introduction

50 Breast cancer (BC) is a critical global health concern, representing the most common 51 cancer diagnosed among women ${ }^{1}$. In Brazil, over 70,000 women are diagnosed with BC 52 every year, accounting for 30% of all cancers in the female population ${ }^{2}$.

53 Approximately 10% of all BC cases are attributable to germline pathogenic variants in 54 susceptibility genes ${ }^{3}$. Rare variants in high penetrance genes (BRCA1, BRCA2, TP53, 55 PTEN, and PALB2) and in moderate penetrance genes (CHEK2 and ATM) are 56 associated with a more than 4-fold and $1.5-4$ fold increased risk of BC, respectively ${ }^{4,5}$. 57 Rare variants in these genes account for approximately 25% of the genetic risk. The 58 remaining genetic risk ($\sim 75 \%$) is derived from common, low penetrance variants that 59 individually confer small risk, but which combined effect can be substantial ${ }^{4-6}$.

60 Genome-wide association studies (GWASs) have been predominantly carried out in 61 European populations ${ }^{7-10}$. Evaluation of PRS across different genetic and environmental 62 backgrounds is essential to enable the implementation of genetic risk stratification 63 strategies for individuals from non-European populations ${ }^{11}$.

64 The Brazilian population exhibits a unique, highly admixed, genetic composition. It is 65 mostly derived from a combination of Native Americans, Southern Europeans 66 (Portuguese, Spanish, and Italian) that immigrated in the period 1500-1900, and 67 Sub-Saharan Africans brought through extensive slave trading until the 1800s. More 8 recently, from 1822 to the first half of the 1900s, other smaller waves of immigration also 69 contributed to Brazil's remarkable diversity, including Japanese, Lebanese, German, 70 and Eastern Europeans ${ }^{12}$. Three in every four Brazilians have multiple genetic 71 ancestries ${ }^{13,14}$. Given Brazil's genetic diversity, any PRS developed in predominantly 72 European populations requires validation before it can be used in clinical settings.
${ }_{73}$ Several laboratory methods are available for genotyping variants directly or indirectly 74 (imputation), including microarrays, whole exome sequencing (WES), and whole 75 genome sequencing (WGS). WES offers an affordable and scalable alternative to arrays 76 and WGS, while allowing for simultaneous rare and common variant genotyping.

77 In this study, we evaluate four BC PRSs ${ }^{7,8,15}$ developed using WES in 15,490 Brazilians.

${ }_{79}$ Methods

${ }_{80}$ Study population

81 A total of 15,490 individuals were selected for this study, including 6,362 women with 82 breast cancer history, and 9,128 adult unphenotyped controls. Both clinical and genetic 83 data were collected from a database of a College of American Pathology 84 (CAP)-accredited laboratory (Mendelics, São Paulo, SP, Brazil). All BC and control 85 subjects provided Informed Consentment for use of retrospective anonymized data for

90 Relatedness calculation and data filtering

1 Relatedness of individuals was obtained from the exomes using somalier software ${ }^{16}$, 92 following the standard protocol required for a VCF file 93 (https://github.com/brentp/somalier\#readme). Concerning related individuals removal, if 94 two individuals had a first-degree relationship, one of them was randomly selected to be included in the dataset. However, if individuals had two or more first-degree 6 relationships, all related individuals were excluded from the dataset. This process 7 resulted in a total of 211 removals. Furthermore, 73 individuals were removed from the sample due to unavailability of files necessary for genome imputation.

PRS analyses were performed after filtering out cases and controls with pathogenic or 100 likely-pathogenic (P/LP) variants in BC genes BRCA1, BRCA2, TP53, PALB2, and PTEN.

102 Exome sequencing and imputation

103 Exome sequencing data were generated from buccal swab or venous blood samples 104 with standard protocol for Illumina Flex Exome Prep, using a custom probe set from 105 Twist Biosciences. Sequencing was conducted in Illumina sequencers and the 106 bioinformatics pipeline for data analysis followed Broad Institute's GATK best practices

107 (https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-Practices-Workflo 108 ws), with alignment to GRCh38.

109 Imputation of exomes was based on a panel of 2,504 individuals of all ancestries from 110 the 1000 Genomes Project (1KGP) ${ }^{17}$ on GRCh38 (2017 release) 111 (https://www.internationalgenome.org/data-portal/data-collection/grch38). All regions 112 captured from the exome sequencing comprehending at least $1 x$ coverage, as well as 113 off-target regions, were considered for the imputation, performed using Glimpse (v1.1.0) 114 software ${ }^{18}$.

115

116 Polygenic Risk Score calculation
${ }_{117}$ Four BC PRSs with publicly available summary statistics, from three different studies, 118 were evaluated in this work: Khera et al. 2018 ${ }^{7}$, with 5,218 variants; Mavaddat et al. 1192019^{8} PRSs (with 313 and 3,820 variants); and UK Biobank ${ }^{15}$ (UKBB) PRS obtained 120 from a variant thresholding (p-value $<10 e-5$) on summary statistics for phenotype code 121 20001_1002, with 7,538 variants.

122 The PRS variants were selected based on exome bed kit distance and minor allele 123 frequency (MAF). Additionally, the PRS from Mavaddat study, originally with 3,820 124 variants, had a pathogenic variant of moderate-penetrance in CHEK2 gene (CHEK2 125 p.lle157Thr - Clinvar: RCV000144596) that was removed to avoid conflation with 126 monogenic risk.

127 PRS calculation was performed using a software developed by Mendelics, evaluating 128 the weighted sum of beta values, in which weights are based on the number of the

129 individual's alleles containing the variant of the PRS file. The sum is normalized by all 130 beta positive and negative values so the final value can be between zero and one.

131

132 Genetic Principal Component Analyses (PCA) Assessment

133 PCA was calculated for exomes from a projection in $1 K G P^{17}$ and Human Genome 134 Diversity Project (HGDP) ${ }^{19}$ samples. Only variants with MAF > 1% and that could have 135 been directly genotyped using WES were included for the PCA analysis in 1KGP and 136 HGDP samples using plink2 ${ }^{20}$. Exomes were converted to plink bfile format (bed, bim, 137 and fam files) and had duplicated variants removed. PCA projection for 10 PCs was 138 calculated using plink2 -score method, with allele frequencies from the breast cancer 139 case-control sample.

140

141 Ancestry evaluation

142 Admixture ${ }^{21}$ was used to extract continental ancestries from all non-related and data 143 completed exomes. The analysis was supervised by the 1KGP samples, after removal 144 of South Asian, Oceania, and admixed Americans from the GRCh38 1KGP release of 145 2017. South Asian and Oceania ancestries were removed because they are not a 146 significant part of Brazilian ancestral composition. Latin American admixed populations 147 (Colombian, Peruvian, Puerto Rican, and Mexican) were removed to avoid confounding 148 with the native americans belonging to the same population label. Continents evaluated 149 were: Africa - AFR, America - AMR, East Asia - EAS, and Europe - EUR. Ancestry

150 results were further used for splitting individuals into groups according to their ancestry 151 composition, to further analyze the effect size of PRS on each group.

152

153 Paired imputed and sequenced genomes analysis
154 Exome-imputed variants and directly sequenced variants from WGS were compared 155 using 1001 samples from an independent Brazilian population dataset 156 (http://elsabrasil.org/) that had both WES and WGS available. The WES were 157 sequenced and imputed also using the same method previously described. BC 158 PRS-3820 from Mavaddat et al. study was calculated for both imputed and sequenced 159 genomes, and their Spearman correlation was calculated using R software base 160 function cor.test.

161

162 Statistical analyses

163 PRS values were standardized according to the control values prior to all statistical 164 analyses. PCs were Z-scored prior to analyses. To assess the effect size of PRS on 165 breast cancer status ($0=$ control, $1=$ case) corrected for PCs, Odds Ratio (OR) per 166 standard deviation of PRS was calculated by performing a logistic regression of BC 167 status with PRS and PCs 1 to 10 as predictors. AUC for the full dataset evaluation was 168 obtained using the yardstick R package (yardstick.tidymodels.org/) roc_auc function, in 169 the testing data split (25\%). In order to find segmentation effect-sizes, individuals were 170 classified into deciles or percentiles following the left-open and right-closed intervals. 171 OR for deciles was calculated by first selecting only the decile analyzed and the interval

172 from $40-60 \%$ individuals as the control section, and binarizing it $(0=$ belongs to the 173 control interval $40-60 \%, 1$ = belongs to the decile analyzed, for example, 10\%); and 174 performing a logistic regression analysis on the binarized decile information with 175 correction for PCs 1 to 10. A similar approach was conducted for calculating the OR on 176 percentiles for comparison with Mavaddat's ${ }^{8}$ PRS validation. For each ancestry 177 proportion group, AUC was estimated using 10-fold cross-validation with the R package 178 caret 22. All PRS 95\% confidence intervals (CI) were obtained from the logistic 179 regression output from the R function glm (stats package ${ }^{23}$). OR and Cl for genes 180 BRCA1, BRCA2, PALB2, TP53, ATM and CHEK2 were obtained using epitools R 181 package ${ }^{24}$. All statistical tests performed were two-tailed.

183 Results

184 Case-control sample selection and characteristics

185 After removal of 211 subjects with a first-degree relationship and 73 with missing files 186 necessary for imputation, a total of 15,206 subjects remained (Supplementary Table 187 1). Four percent of all cases and controls were removed from the analysis due to their 188 presence of pathogenic or likely-pathogenic (P/LP) variants in high penetrance genes 189 with OR > 5 for breast cancer: BRCA1, BRCA2, TP53, PALB2, and PTEN ($\mathrm{n}=629$). 190 Therefore, the sample used for PRS evaluation consisted of 5,730 women with a BC 191 history, and 8,847 unphenotyped controls, both with known sex and age (Table 1).

193 Table 1. Demographics of cases and controls in BC dataset used for PRS evaluation

		Case	Control	Total	p value
	Total	5,730	8,847	14,577	-
Sex	F	4,225	5,730	9,955	-
	M	-	4,662	4,662	-
	Total	$49.5(11.7)$	$41.6(13.3)$	$44.8(13.3)$	0.000
	F	$49.5(11.7)$	$42(13.7)$	$46.4(13.1)$	0.000
	M	-	$41.3(12.9)$	$41.3(12.9)$	-

194 p-values obtained from two-tailed t-tests.
195
196 Ancestry composition of our sample was obtained using ADMIXTURE analysis ${ }^{21}$, 197 supervised by EUR, EAS, AFR and non-admixed AMR populations of 1KGP and HGDP. 198 The results show that the majority of individuals have EUR as their greatest ancestry 199 proportion (median 84\%, SD 18\%). Besides that, a significant portion of AFR (median 2006%, std. dev. 12\%) and AMR (median 8\%, SD 7\%) ancestries are present, 201 complemented with a variety of EUR proportions. A small quota of EAS is also observed 202 (median < 1\%, SD 12\%), composed by 214 individuals with over 70\% of this ancestry.

Ancestry Proportion

204 Figure 1. Ancestry composition of our Brazilian cohort. Estimated ancestries are 205 shown as proportions per individual. Each thin bar represents one individual and their 206 ancestry proportion. Europe (EUR) in purple, Africa (AFR) in blue, East Asia (EAS) in 207 green and America (AMR) in yellow.

209 Effect sizes of four different PRSs in the Brazilian population

210 Four PRS files from three studies were selected for initial effect size investigation in our 211 cohort (Supplementary Table 2). All four PRS files had their variants further filtered to 212 address only variants covered by the imputation of our exomes.

214 PCA was performed on the exomes to capture the population genetic structure. PRSs 215 were calculated for the imputed genomes (details described in the Methods) and 216 standardized by z-score to improve interpretability. To avoid confounding from P/LP 217 variants on PRS effect, we have evaluated only individuals without those rare variants 218 ($n=14,577$). Effects were corrected for the ten first PCs, and results are all reported in 219 Supplementary Table 3.

221 Both $\mathrm{PRS}_{\text {Broad }}$ and PRS_{3820} performed well, with very significant effect sizes (both 222 p -values <0.0001) following the direction of risk rise as the PRS increases $\left(\mathrm{OR}_{\text {Broad }}\right.$: 223 1.52; OR_{3820} : 1.41). PRS_{313} and $\mathrm{PRS}_{\mathrm{UKBB}}$ have not reached significance level for their OR 224 results (p-value ${ }_{313}: 0.315$ and p-value UКвв $: 0.985$). Goodness of fit of the model is also 225 greater for PRS_{3820} (Nagelkerke pseudo-R2: 0.061) and $\mathrm{PRS}_{\text {Broad }}$ (Nagelkerke 226 pseudo-R²: 0.051). Note that pseudo-R2 values should not be interpreted as a linear 227 regression R^{2} value, but as a metric of improvement from null model to fitted model, 228 which has its value mainly by being compared between different PRS models in which a 229 greater pseudo- R^{2} indicates a better goodness of fit to the data.

231 Since $\mathrm{PRS}_{\text {Broad }}$ and PRS_{3820} showed significant results per standard deviation, they were 232 used to split the data into deciles to evaluate BC risk conferred by PRS in each strata. 233 These analyses were also corrected for the first ten PCs. Interestingly, shorter 234 confidence intervals and a better "staircase" shape can be seen for PRS_{3820} plot in 235 comparison to $\mathrm{PRS}_{\text {Broad }}$ (Figure 2). Moreover, especially the top 10% (90-100\% interval) 236 present a much greater effect for $\mathrm{PRS}_{3820}\left(\mathrm{OR}_{90-100}: 1.94\right.$; $\left.\mathrm{Cl}: 1.71-2.20\right)$ compared to
$237 \mathrm{PRS}_{\text {Broad }}\left(\mathrm{OR}_{90-100}: 1.77\right.$; CI: 1.51-2.10) (Supplementary Table 4), indicating a better 238 performance of the former in identifying women with increased risk of BC . Therefore we 239 decided to focus our next analyses on PRS_{3820}, which was the best PRS to identify BC 240 risk in our Brazilian population.

241

243 Figure 2. Effect sizes by decile of PRS_{3820} and $\mathrm{PRS}_{\text {Broad }}$. Odds Ratios (OR) and 244 Confidence Intervals (CI) for PRS_{3820} (red) and $\mathrm{PRS}_{\text {Broad }}$ (blue). ORs for both PRS 245 deciles were corrected for the first ten PCs.

248 As seen in the previous results, the PRS_{3820} showed a positive association with 249 increased risk of BC (OR per standard deviation: 1.41; CI: 1.36-1.47) after correction

250 for the first 10 principal components (PCs). This association was slightly lower when 251 compared to the original study test set, composed of only Europeans (OR: 1.66; CI: 252 1.61-1.70). Besides that, performance of our model with PRS_{3820} in identifying BC 253 cases was very similar to the original study ($\mathrm{AUC}_{\text {Brazilians: }} 0.610$ vs. AUC $_{\text {Europeans: }}: 0.636$). 254 After calculating OR per percentiles, we observed that the PRS_{3820} exhibited an 255 expressive risk increase for our admixed population, although the increase was smaller 256 than the original study, which applied the PRS_{3820} to a population with the same 257 ancestry it was originated from $\left(\mathrm{OR}_{\text {Brazilians }}>99: 2.72 ; \mathrm{OR}_{\text {Europeans }}>99: 3.95\right)$.

260 Figure 3. Comparison of PRS_{3820} performance for Europeans and Brazilians. The 261 plot shows the PRS_{3820} adapted in this study (orange), with 2,892 variants, compared 262 with the original from Mavaddat et al. study (blue), with 3,820 variants.

264 The lower interval, comprehending the lowest 1\% of PRS values, showed a smaller 265 decrease in BC risk compared to the original study. This result is probably related to the 266 small sample size of this section, with only 31 cases and 88 controls available to 267 calculate OR. In addition, the 95th to 99th percentile interval exhibited marginal growth 268 in odds ratio (OR) when contrasted with the interval immediately below (OR 90th-95th: 269 1.75, OR 95th-99th: 1.83). Besides that, both effect sizes show an expressive increase 270 in BC risk due to PRS results. This might be partly due to the cohort sample size. Our 271 study evaluated a total of 14,577 individuals, while Mavaddat's evaluated twice this 272 number in their test dataset composed of joined cohorts ($n=29,751$).

274 PRS evaluation by ancestry composition

275 Since our sample contains a great majority of EUR ancestry proportion, we decided to 276 evaluate the PRS effect size in different ancestry compositions. We have created three 277 groups: EAS majority ($>50 \%$ EAS, $n=217$), $0-50 \%$ EUR ($n=763$) and $51-100 \%$ 278 EUR ($n=13,597$). All three bins had statistically significant ($p<0.001$) ORs above 1.40 279 (1.54, 1.44 and 1.43, respectively) per PRS standard deviation, showing a positive 280 association of the PRS value with increased BC risk. The EAS majority group shows a 281 wider confidence interval due to the small sample size (cases $=64$, controls $=153$). 282 Besides that, the lower tail of the 95% confidence interval has an OR of 1.14

283 (Supplementary Table 5), which means at least 14% risk rise for each unit of 284 standardized PRS increase.

285
A.

B.

288 Figure 4. Breast cancer Odds Ratio by ancestry proportion. The cohort was split 289 into three groups based on main ancestry: EAS majority (>50\% EAS), 0-50\% EUR and 29051 - 100\% EUR (A) Ancestry composition of each group, with colors representing 291 continental ancestries for each subject. (B) Breast cancer ORs by PRS_{3820} standard 292 deviation for the three groups. p-values displayed were corrected for 293 multiple-hypothesis testing using Bonferroni method.

295 Comparison of PRS derived from genomes imputed from exomes with WGS

296 A correlation of 0.76 (p value $<2.2 \mathrm{e}-16$) was obtained between $B C \mathrm{PRS}_{3820}$ values 297 calculated from imputed genomes and WGS, showing a consistent concordance 298 between both methods (Supplementary Figure 1A).

300 When we compared imputed (exome) and sequenced genomes (WGS), most of the 301 extreme PRS_{3820} values were concordant (decile 1: 56%; decile 10: 60%) 302 (Supplementary Figure 1B). Furthermore, most of the proportion which is not in the 303 same decile is in the surrounding deciles, which indicates a low deviation from the 304 purpose of predicting risk.

306 Comparison of PRS and breast cancer genes effect size

307 For the purpose of understanding how the PRS_{3820} effect size compare to known high 308 and moderate risk genes for BC, we have compared OR of the top PRS_{3820} decile 309 (PRS90) with all pathogenic variants located in TP53, BRCA1, BRCA2, PALB2, ATM 310 and CHEK2 genes (Figure 5) in this cohort of individuals.

312 Figure 5. Effect sizes of 90th percentile of PRS and BC genes in BC risk. Effect 313 sizes (OR and Cl) were obtained according to the presence of pathogenic variants in 314 the genes TP53, BRCA1, BRCA2, PALB2, ATM and CHEK2, or belonging to the 90th to 315 100th percentiles of PRS_{3820}.

317 As expected, TP53, BRCA1 and BRCA2 present the most extreme BC risks (OR: 14.05, 318 CI: 4.1-95.05; OR: 13.43, CI: 9.25-20.32; and OR: 8.77, CI: 6.15-12.93, respectively). 319 PRS90 risk (OR: 1.94, CI:1.71-2.2) can be compared with moderate risk BC genes ATM 320 (OR: 1.99, CI: 1.42-2.78) and CHEK2 (OR: $1.89, \mathrm{CI}: 1.35-2.66$). This result indicates 321 how an increased risk for BC due to PRS90 could be interpreted in the clinical context, 322 potentially following the same care protocols as for a moderate risk monogenic variant 323 for BC.

325 Discussion

326 In the present study we have validated a breast cancer PRS developed from Europeans 327 in the highly admixed Brazilian population. The PRS adapted from Mavaddat et al. study 328 with 2,892 variants 8 showed a statistically significant risk prediction value (OR: 1.41 per 329 SD). Furthermore, individuals classified in the top decile had an expressive effect size 330 (OR: 1.94; CI: 1.71-2.20) of almost one-fold increased risk of BC compared to the 331 middle percentiles (40-60\%). This PRS highest decile risk is comparable with the 332 previously reported risks for moderate-penetrance monogenic variants in ATM, NF1, 333 and CHEK2 genes (1.82, 1.93, and 2.47 OR, respectively) ${ }^{25}$, and also with risks in ATM 334 and CHEK2 calculated in our sample (1.99 and 1.89 OR, respectively).

336 This study is based on a previous study from Mavaddat et al. 2019, which developed 337 and validated a PRS with 3,820 variants evaluating aggressive BC risk (metastatic BC). 338 For all BC subtypes (ER+ and ER-) they found an OR of 1.71 per SD (CI: 1.641 .79) in 339 the validation set ($\mathrm{n}=29,751$; cases = 11,428), and OR 1.66 per SD (CI: 1.61-1.70) in 340 the prospective set ($n=190,040$; cases $=3,215$). These values are even greater 341 compared to the widely used 313 PRS (OR: 1.65 per SD; CI: 1.59-1.72 in validation 342 set). However, they included a CHEK2 gene pathogenic variant in the PRS and worked 343 with only aggressive BC, which may have led to overestimating their OR values. A study 344 from Liu and colleagues has evaluated another modification of the same PRS with 345 3,820 variants developed from Mavaddat et al. for African, Latin, and European
${ }_{346}$ populations ${ }^{26}$. According to the study, the effect size of this PRS to a BC risk in an
347 European sample ($n=33,594$) was 1.40 per standard deviation, a result very similar to 348 ours for a Brazilian sample (OR 1.41 per SD; $n=14,477$). They deliberately have 349 included women with in situ ductal BC as well as women with metastatic BC, what they 350 claim to be a reason for OR decline compared to the original study, which included only 351 metastatic BC women both in their discovery and validation sets. Our study, however, 352 does not distinguish BC types, therefore we hypothesize that both metastatic and in situ ${ }_{353} \mathrm{BC}$ are included, which may be a factor, together with genetic population structure, that 354 decreased the OR compared to the original study.

355
356 Furthermore, significant effect sizes per PRS standard deviation were obtained for 357 distinct ancestry compositions within our sample. Due to the high proportion of EUR 358 (median 84\%, std. dev. 18\%), we separated the sample into groups with different 359 ancestry compositions. Despite the small sample size $(\mathrm{n}=217)$ of the EAS majority 360 group (Supplementary Table 5), there was a statistical significance (adjusted p-value: 361 0.006) for the effect size in this group, which had similar magnitude (OR: 1.54, CI: 362 1.40-2.12) of the full sample (OR: 1.41, CI: 1.36-1.47, p-value: <0.0001). Also, PRS_{3820} 363 had significant and expressive effect sizes on BC risk for both EUR proportion groups 364 (0-50\% EUR OR: 1.44, CI: 1.23-1.69; 51-100\% EUR OR: 1.43, CI: 1.38-1.49). These 365 results evidence that, for individuals with a more prominent East Asian ancestry, for 366 admixed individuals, and for predominantly Europeans, PRS_{3820} is still effective in 367 stratifying BC risk.

369 All of our PRS values were calculated according to a new methodology: the imputation 370 of genomes from exomes. This approach has demonstrated to be very successful for 371 PRS calculation and assessment of BC risk in our study, and could be very interesting 372 for laboratories that already perform exome sequencing as a cost-effective methodology 373 to identify P/LP variants for BC. A variety of studies have compared low-pass genome 374 sequencing with arrays for different applications, such as pharmacogenetics, GWAS, 375 CNV detection, and PRS calculation ${ }^{27,28,29}$. The study of Li et al. ${ }^{28}$ reported improved 376 accuracy for polygenic risk prediction of imputed low-pass genome compared to array 377 imputation for both coronary artery disease and BC. Despite the slight difference we 378 found between PRS values calculated from sequenced genomes and imputed genomes 379 from exomes (Spearman correlation: 0.76), decile classification showed satisfactory 380 concordance between both methods for the majority of results in the extreme deciles (1 381 and 10th), which are the most important to define decreased or increased risk. 382 Unfortunately, it was not possible to assess the predictive power of PRS values 383 calculated from genomes of BC patients due to unavailability of paired exome and 384 genome data.

386 Among familial BC cases, approximately 25% have a P/LP germline variant reported ${ }^{30}$. 387 In the Brazilian population, a robust study with 1,663 breast cancer patients detected 388 20.1\% of P/LP germline variants using multigene panel testing ${ }^{4,6}$. A 2017 study reported 389 that 18% of the hereditary BC can be explained by a polygenic effect of variants 390 discovered in a GWAS ${ }^{31}$. Therefore, employing this PRS in the clinical practice might 391 bring an elucidation to BC Brazilian families without high or moderate-effect germline

392 variants detected. Moreover, women without prior knowledge of their familial BC 393 condition, or even those with a high PRS risk by chance, will have the possibility to be 394 informed of their results and share them with their physicians to adopt preventive 395 actions accordingly to their risk strata, such as intensifying surveillance adding breast 396 magnetic resonance imaging to mammography screening ${ }^{32}$.

398 In conclusion, our work was able to validate a PRS developed in Europeans in the 399 Brazilian population, using imputed genomes from exomes. The top decile of this PRS 400 presents a risk comparable to moderate-risk monogenic variants for BC. Future studies 401 will be required to evaluate the combination of PRS with P/LP variants and clinical 402 factors in order to deliver more informative results to patients, thus physicians can 403 recommend prevention strategies based on their combined polygenic and monogenic 404 BC risk.

405

406 Ethics Statement

407 This work was approved by the Ethics Committee Comissão para análise de projeto de 408 pesquisa of Hospital das Clínicas da FMUSP - CAPPesq under the CAAE number 409 70112423.3.0000.0068.

${ }_{411}$ Acknowledgements

412 We thank all individuals once sequenced in Mendelics laboratory who have consented 413 to participate in this research. We also thank all UKBB participants for their contribution 414 to the PRS hereby analyzed, and all authors from previous studies on BC PRSs in 415 which we based our validation (Khera et al. 2018 and Mavaddat et al. 2019). Maria 416 Aparecida Azevedo Koike Folgueira received research support from Conselho Nacional 417 de Desenvolvimento Científico e Tecnológico, Brazil (CNPq-308052/2022-6).

419 Data Availability

420 All variants and betas which compose the four evaluated PRSs are available as 421 Supplementary Information. Individual cases and controls data are not publicly available 422 due to the confidentiality consentment agreement signed by all included in the study.

424 Competing Interests

425 Flávia Eichemberger Rius, Danilo Viana, Júlia Salomão, Laila Gallo, Renata Freitas, 426 Cláudia Bertolacini, Lucas Taniguti, Danilo Imparato, Flávia Antunes, Gabriel Sousa, ${ }_{427}$ Renan Achjian, Eric Fukuyama, Cleandra Gregório, luri Ventura, Juliana Gomes, 428 Nathália Taniguti, and David Schlesinger are currently employed by Mendelics, or were 429 employed at the time of the study.

430 Rodrigo Guindalini acted as a consultant for AstraZeneca, Janssen Oncology, 431 Roche/Genentech and Igenomix; received speaker honoraria from AstraZeneca, Bristol 432 Myers Squibb, GlaxoSmithKline, Merck Sharpe \& Dohme Brasil, Novartis, and Roche 433 outside the submitted work; and has equity in Mendelics Análise Genômica.

434 Olufunmilayo I. Olopade is co-founder at CancerlQ; serves as scientific advisor at 435 Tempus; and has received research funding from Color Genomics and 436 Roche/Genentech.

437 José Eduardo Krieger, Yonglan Zheng, Dezheng Huo, Simone Maistro and Maria 438 Aparecida Koike declare no competing interests.

439 Author Contributions

440 Generated Main Data: Flávia Eichemberger Rius, Danilo Viana, Júlia Salomão, Laila 441 Gallo, Renata Freitas, Cláudia Bertolacini, Lucas Taniguti, Danilo Imparato, Flávia 442 Antunes, Gabriel Sousa, Renan Achjian, Eric Fukuyama, David Schlesinger.

443 Analyzed Data: Flávia Eichemberger Rius, Rodrigo Guindalini, Danilo Viana, Lucas 444 Taniguti, Danilo Imparato, Flávia Antunes, Gabriel Sousa, Renan Achjian, Eric 445 Fukuyama, Yonglan Zheng, Dezheng Huo, Olufunmilayo I. Olopade, Maria Aparecida 446 Koike, David Schlesinger.

447 Other Contributions: Cleandra Gregório, Iuri Ventura, Juliana Gomes, Nathália Taniguti, 448 Simone Maistro, José Eduardo Krieger.

References

451 1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence

454 2. Instituto Nacional de Câncer. Estimativa 2023 : incidência de câncer no Brasil.

456 3. Nielsen, F. C., van Overeem Hansen, T. \& Sørensen, C. S. Hereditary breast and 457 ovarian cancer: new genes in confined pathways. Nat. Rev. Cancer 16, 599-612

459 4. Guindalini, R. S. C. et al. Detection of germline variants in Brazilian breast cancer

461 5. Shiovitz, S. \& Korde, L. A. Genetics of breast cancer: a topic in evolution. Ann. Oncol. 26, 1291-1299 (2015).

463 6. Melchor, L. \& Benítez, J. The complex genetic landscape of familial breast cancer. Hum. Genet. 132, 845-863 (2013).

465 7. Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify

468 8. Mavaddat, N. et al. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. Am. J. Hum. Genet. 104, 21-34 (2019).

470 9. Zhang, H. et al. Genome-wide association study identifies 32 novel breast cancer

473 10. Morra, A. et al. Association of germline genetic variants with breast cancer-specific survival in patient subgroups defined by clinic-pathological variables related to

478 12. Salzano, Freire-Maia, F. M. N. As origens. in Populações Brasileiras: Aspectos

485 15. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of 486 a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

488 16. Pedersen, B. S. et al. Somalier: rapid relatedness estimation for cancer and

490 17. 1000 Genomes Project Consortium et al. A global reference for human genetic 491 variation. Nature 526, 68-74 (2015).

492 18. Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. \& Delaneau, O. Efficient phasing from 929 diverse genomes. Science 367, (2020).

497 20. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and

510 26. Liu, C. et al. Generalizability of polygenic risk scores for breast cancer among

515 28. Li, J. H., Mazur, C. A., Berisa, T. \& Pickrell, J. K. Low-pass sequencing increases
richer datasets. Gigascience 4, 7 (2015).
21. Alexander, D. H., Novembre, J. \& Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655-1664 (2009).
22. Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 28, (2008).
23. R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing. (https://www.R-project.org/, 2023).
24. Aragon, T. J., Fay, M. P., Wollschlaeger, D. \& Omidpanah, A. epitools: Epidemiology Tools. Tools for training and practicing epidemiologists including methods for two-way and multi-way contingency tables. (CRAN, 2020).
25. Hu, C. et al. A Population-Based Study of Genes Previously Implicated in Breast Cancer. N. Engl. J. Med. 384, 440-451 (2021). women with european, african, and latinx ancestry. JAMA Netw. Open 4, e2119084 (2021).
27. Wasik, K. et al. Comparing low-pass sequencing and genotyping for trait mapping in pharmacogenetics. BMC Genomics 22, 197 (2021). the power of GWAS and decreases measurement error of polygenic risk scores compared to genotyping arrays. Genome Res. 31, 529-537 (2021).

18 29. Chaubey, A. et al. Low-Pass Genome Sequencing: Validation and Diagnostic Utility from 409 Clinical Cases of Low-Pass Genome Sequencing for the Detection of Copy Number Variants to Replace Constitutional Microarray. J. Mol. Diagn. 22,

823-840 (2020).
522 30. Bahcall, O. Common variation and heritability estimates for breast, ovarian and prostate cancers. Nat. Genet. (2019) doi:10.1038/ngicogs.1.

524 31. Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk loci.
$525 \quad$ Nature 551, 92-94 (2017).
526 32. Monticciolo, D. L., Newell, M. S., Moy, L., Lee, C. S. \& Destounis, S. V. Breast

Recommendations From the ACR. J. Am. Coll. Radiol. (2023) doi:10.1016/j.jacr.2023.04.002.

