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A program for real-time surveillance of SARS-CoV-2 genetics 1 

Abstract 2 

The COVID-19 pandemic brought forth an urgent need for widespread genomic surveillance for 3 

rapid detection and monitoring of emerging SARS-CoV-2 variants. It necessitated design, 4 

development, and deployment of a nationwide infrastructure designed for sequestration, 5 

consolidation, and characterization of patient samples that disseminates de-identified information 6 

to public authorities in tight turnaround times. Here, we describe our development of such an 7 

infrastructure, which sequenced 594,832 high coverage SARS-CoV-2 genomes from isolates we 8 

collected in the U.S. from March 13th 2020 to July 3rd 2023. Our sequencing protocol (‘Virseq’) 9 

generates mutation-resistant sequencing of the entire SARS-CoV-2 genome, capturing all major 10 

lineages. We also characterize 379 clinically relevant SARS-CoV-2 multi-strain co-infections and 11 

ensure robust detection of emerging lineages via simulation. The modular infrastructure, 12 

sequencing, and analysis capabilities we describe support the U.S. Centers for Disease Control 13 

national surveillance program and serve as a model for rapid response to emerging pandemics at a 14 

national scale. 15 

Introduction 16 

The rapid emergence of COVID-19 and looming burden on global healthcare systems warranted 17 

swift responses from the international community. The causal virus, SARS-CoV-2, was first 18 

identified by metagenomic RNA sequencing1 as well as Sanger- and PCR-based detection 19 

methods2,3. Very early in the pandemic response, we prioritized the development of SARS-CoV-2 20 

diagnostic assays to meet the demand for detection methods, offering one of the first PCR-based 21 

tests and performing as many as 275,000 tests daily4. This immense scale of PCR testing enabled 22 
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us to assess the dynamics of COVID-19 infection as it pertains to PCR positivity5 and also provide 23 

population-based analysis on the maintenance of antibody titers6,7. 24 

Similar to other betacoronaviruses, the SARS-CoV-2 genome mutated as it infected and 25 

spread across the population, with a mutation rate of approximately 1-2 x 10-6 mutations per 26 

nucleotide per replication cycle8. Such genetic changes are known to impact the severity and 27 

transmissibility of infection as well as vaccine efficacy9, thus requiring close to real-time 28 

surveillance using next generation sequencing (NGS)-based methods to inform public health 29 

policies. Multiple whole genome sequencing approaches have been applied to support this need, 30 

namely the ARTIC SARS-CoV-2 amplicon-based protocol for whole genome sequencing10, direct 31 

RNA sequencing11, and sequence hybridization12. Shotgun metagenomic sequencing of 32 

wastewater has also been an effective surveillance strategy for approximating variant abundances13 33 

and identifying so-called ‘cryptic lineages’14,15, as it became apparent that COVID-19 patients 34 

exhibit fecal viral shedding16,17. 35 

Ultimately, a greater need for high-throughput, real-time genomic sequencing of SARS-36 

CoV-2 emerged in the United States through the SARS-CoV-2 Sequencing for Public Health 37 

Emergency Response, Epidemiology and Surveillance (SPHERES) spearheaded by the Centers 38 

for Disease Control (CDC). To address this public health need and in collaboration with CDC 39 

SPHERES, we rapidly developed a national surveillance apparatus using our purposely designed 40 

infrastructure for flexible sampling, a unique approach for SARS-CoV-2 whole genome 41 

sequencing, and tailored analytical methodologies that ensure continuously robust SARS-CoV-2 42 

lineage determination using the Phylogenetic Assignment of Named Global Outbreak (PANGO) 43 

nomenclature18. Our assay, which we call ‘Virseq’, is distinguished from other NGS-based SARS-44 

CoV-2 whole genome sequencing approaches through its use of probe-based tiling19 and long 45 
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reads, which provide versatile, mutation-resistant capabilities. As of July 3rd, 2023, we have 46 

sequenced 594,832 genomes (10X median depth of coverage) and have provided 524,498 high-47 

quality SARS-CoV-2 genomes (10X median depth of coverage, >90% genome coverage, complete 48 

S gene coverage) and patient demographic data to the CDC using our Virseq assay, representing 49 

continuous snapshots of SARS-CoV-2 viral evolution. 50 

In this study, we provide a retrospective analysis of our Virseq assay using our vast 51 

repertoire of high-quality genomes, showcasing our surveillance capabilities and the modular 52 

resources that support its continued use. We show that Virseq has generated uninterrupted 53 

surveillance reflecting the nationwide prevalence of SARS-CoV-2 consistent with our RT-PCR 54 

sample collection, and we further demonstrate the robustness of SARS-CoV-2 lineage 55 

determination through our in-house analytical capabilities. We also address the analytical 56 

challenges posed by rare SARS-CoV-2 co-infections by developing a custom workflow that yields 57 

haplotype-resolved consensus genomes. Finally, we pose this suite of resources as a model for 58 

mounting rapid and robust large-scale surveillance networks. 59 

Results 60 

An infrastructure for nationwide COVID-19 surveillance 61 

The rapid emergence and continuous evolution of SARS-CoV-2 necessitated setting up a national 62 

surveillance program that could provide real-time epidemiological snapshots across the United 63 

States. In response to the CDC’s basal surveillance program, we organized and implemented a 64 

nationwide infrastructure to identify SARS-CoV-2 positive patient samples across the United 65 

States, consolidate these samples and their associated demographic data, and sequence their 66 

genomes to determine their SARS-CoV-2 PANGO lineages. Our surveillance system also includes 67 
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mechanisms for monitoring emerging lineages and their potential impacts on qPCR and 68 

sequencing performance. Further, this setup is flexible and modular, enabling rapid responses and 69 

developments to our pathogen surveillance.  70 

A schematic of this modular infrastructure and its associated sequencing protocols is shown 71 

in Figure 1. In Figure 1a, we show a high-level view of our surveillance pipeline that begins with 72 

sample accessioning and resulting in whole genome sequencing reports with de-identified sample 73 

metadata. Upper respiratory samples (nasopharyngeal (NP) or nasal swabs) collected in 0.9% 74 

saline or viral transport media were collected and analyzed through our COVID-19 RT-PCR Test 75 

at various Labcorp® service centers and laboratories, and the resulting PCR extraction plates 76 

containing SARS-CoV-2-positive samples were then shipped to Labcorp® central locations and 77 

consolidated into plates with high viral titer samples (i.e. N1 Ct < 31) using our custom developed 78 

plate selector app (Figure 1b, Methods). The selection of plates using this app is critical, as it de-79 

identifies data thereby ensuring HIPPA compliance and allows flexibility in choosing samples. For 80 

example, we can focus on certain geographic regions where outbreaks are underway, put 81 

limitations on the amount of data from a state to ensure uniform surveillance, and threshold on the 82 

PCR amplification N1 Ct value to ensure sufficient genetic material is available for sequencing in 83 

each sample. The resulting consolidated plates of high viral titer samples were then shipped to our 84 

sequencing labs where samples were processed through custom tiled Molecular Loop® probe 85 

amplification, followed by library preparation and sequencing on the PacBio® Sequel II™ platform 86 

in a highly multiplexed fashion (Figure 1c-d). PacBio® raw data was then processed to generate 87 

Circular Consensus Sequencing (CCS) reads which were then analyzed using our custom 88 

bioinformatics workflow to generate consensus genomes for each sample (Figure 1d). Stringent 89 

sequence coverage quality control was then applied followed by PANGO lineage determination 90 
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for each sample (Methods), and results were then merged with patient demographic data and de-91 

identified with a new custom ID generated for each sample (Figure 1d). Consensus genomes, 92 

summary reports, raw CCS reads, and alignment variant calls were then provided to CDC who in 93 

turn processed our submission and deposited the relevant data to public repositories, namely 94 

GISAID20 and NCBI21. 95 

High-throughput, high-fidelity SARS-CoV-2 genome surveillance pipeline 96 

The rapid pathogen evolution during a pandemic and the possibility of sporadic outbreaks 97 

necessitates a highly robust genomic surveillance pipeline. From January 2021 to July 2023, we 98 

have used our Virseq pipeline (Figure 1) to report 524,498 high-quality SARS-CoV-2 genomes 99 

(10X median depth of coverage, >90% genome coverage, complete S gene coverage) and patient 100 

demographic data to the CDC. These sequences captured all major lineages that have emerged 101 

throughout the COVID-19 pandemic since the inception of this surveillance effort, including 102 

Alpha, Delta, Omicron, and the many Omicron subvariants (Figure 2, Methods). When overlaying 103 

the positivity rate of our diagnostic PCR assays used for sample picking, we observed multiple 104 

fluctuations matching variant emerges, such as BA.1, BA.4/BA.5, and XBB.1.5 (Figure 2b). 105 

Stratifying genomes by U.S. Health and Human Services (HHS) region (HHS regions 1-10; 106 

Methods), we found that the HHS regions 1 and 2 (corresponding to the U.S. Northeast) often 107 

served as a harbinger to predict variant emergence for all other regions (Figure S1). For example, 108 

the initial Omicron variant (BA.1) and the more recent XBB.1.5 variant reached ~50% prevalence 109 

in HHS regions 1 and 2 approximately one week and four weeks prior to all other regions, 110 

respectively (Figures S1 and S2). 111 

After the BA.1 wave, reports indicated that SARS-CoV-2 infections by Omicron variants 112 

exhibited lower viral loads22,23, prompting us to investigate the diagnostic PCR N1 Ct values of 113 
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our samples, which are a useful proxy for viral load. As expected, lower sample Ct values were 114 

correlated with both increased average depth of coverage and higher consensus genome coverage 115 

(Figure S3a). We also observed shifts in sample diagnostic N1 Ct values throughout the pandemic 116 

that ranged from 20-21 in 2021 and exceeded 24 during the BA.1 wave in the 2021-2022 winter 117 

season, prior to reaching a steady state between 22-23. (Figure S3b). In our later analysis of SARS-118 

CoV-2 co-infections, we found that co-infected sample N1 Ct values followed the same trends as 119 

those of samples where only a single SARS-CoV-2 lineage was detected. Together, these results 120 

indicate that our surveillance captures the overall kinetics and patterns of circulating variants. 121 

 This collection of high-quality genomes also uniquely captured demographic trends from 122 

all 50 states in the U.S. and the District of Columbia. States with the highest representation include 123 

California (n>62,000) and New Jersey (n>48,000), while other key states from HHS regions 9 and 124 

10 (WA, n >19,000; AZ, n>17,000), HHS region 5 (IL, n>23,000; OH, n>10,000), and HHS 125 

regions 4 and 6 (NC, n>45,000; FL, n>36,000; TX, n>14,000) also had strong sampling (Figure 126 

3a, Table S1). We also observed that the number of Virseq-generated genomes has represented a 127 

consistent proportion of total SARS-CoV-2-positive samples collected in each HHS region with 128 

minor fluctuations (Figure 3b). These fluctuations are expected as the timing of variant outbreaks 129 

(e.g. BA.1) can vary across HHS regions along with concomitant surges in PCR positivity rate 130 

(Figure 2b). Despite these changes, we still observed sustained census normalized sampling across 131 

both our diagnostic PCR assays and Virseq (Figure S4a) even with an end to the COVID-19 132 

emergency response and the reduction in our surveillance volume in 2023 (Figure S4b). Notably, 133 

we observed a reduction in Virseq surveillance in HHS regions 6-8 at the onset of the BA.2 wave, 134 

as BA.2 prevalence spiked elsewhere in the U.S. before affecting these regions (February 2022; 135 

Figures 2b, 3b, S1, S2, and S4). 136 
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We also found that the age distribution of samples collected in each geographic region 137 

shifted throughout the course of the pandemic, with a plurality from pediatrics in 2021, shifting to 138 

a more even distribution of ages in 2022, and finally shifting to a plurality from older segments of 139 

the population in 2023 (Figures S5 and S6). Interestingly, there was also a modest trend in patient-140 

reported gender, as the proportion of samples from female patients appeared to increase from 2021 141 

to 2022 and once again in 2023 (Figures S5 and S6), despite there not being any difference in 142 

PCR positivity between males and females (Figure S7a). We also observed a bifurcation in PCR 143 

positivity across age groups in March 2022, as pediatric PCR positivity lowered to approximately 144 

half of the positivity in most other age groups and this relative difference has not changed since 145 

(Figure S7b). Intriguingly, two months prior (January 2022), the CDC and FDA announced 146 

multiple expansions of pediatric COVID-19 vaccination availability24–26 (Figure S7b). We also 147 

observed that in June 2022, 18–19-year-olds had a reduction in PCR positivity relative to older 148 

age groups as well, and most recently in June 2023 we observed an increase in geriatric (80+ year 149 

olds) PCR positivity (Figure S7b). These demographic- and region-specific trends in variant 150 

prevalences and PCR positivity rates require a surveillance apparatus like ours that is flexible and 151 

robust to the rapid evolution of the SARS-CoV-2 genome. 152 

Robust, mutation-resistant S gene sequencing using a probe-based long-read strategy 153 

To maintain nationwide surveillance of pathogen genome evolution, the selected whole-genome 154 

sequencing approach must be able to withstand sudden changes in genetic diversity. Our 155 

surveillance apparatus uniquely employs a probe-based long-read sequencing approach that is 156 

mutation-resistant by design due to its ~22X genome tiling of >99% of the SARS-CoV-2 genome, 157 

except for a few hundred base pairs of the 5’- and 3’ peripheral genomic regions (Figure 1c). At 158 

the end of 2021, the Omicron variant (BA.1) emerged and swept through the U.S. in a matter of 159 



 

9 
 

weeks (Figures 2, S1, and S2), dramatically shifting the diversity of the circulating lineages across 160 

the U.S. population (Figure 4a). Unlike earlier variants like Delta which were predominantly 161 

mutated in the ORF1a genic region, the original Omicron variant (BA.1) introduced a surge of 162 

novel S gene mutations (27 SNPs and three deletions compared to Delta) (Figure 4b), raising 163 

concern regarding the ability of PCR- and amplicon-based assays to detect BA.1. In fact, the Spike 164 

gene target failure (SGTF) genomic signature was so common that it became a useful proxy for 165 

the PCR detection of emerging variants, such as Alpha and Omicron27. While interruptions in our 166 

surveillance were not observed (Figure 2), we verified the fidelity of our sequencing of BA.1* 167 

using an in silico approach to check for probe dropout caused by lineage defining mutations 168 

(Methods). We found that our assay retained ~20X in-silico tiling of the S gene during the initial 169 

Omicron wave (Figure 4c), and in the worst-case scenario where we allowed zero SNP tolerance 170 

in probe binding regions, we retained a minimum of ~10X probe tiling (Figure S8). Furthermore, 171 

as the total number of unique mutations and the concurrent prevalence of multiple circulating 172 

lineages measured in terms of their entropy continues to increase with more recent XBB 173 

subvariants, we continue to observe profoundly stable genome-wide probe tiling in silico (Figure 174 

4c). This robust probe tiling is especially important as chronic infections and widespread 175 

vaccination have altered the evolutionary trajectory of the SARS-CoV-2 genome28 and the receptor 176 

binding domain of the S gene remains under considerable selective pressure in the Omicron era8. 177 

We also confirmed the robustness of our sequencing strategy by analyzing the genome-178 

wide per-base coverage of Variants of Concern (VOCs) that have emerged throughout the 179 

pandemic (Figure S9, starting with B.1.1.7 or ‘Alpha’ up until XBB.1.5). We found that overall 180 

per-base coverage has remained stable and well above our minimum per-base coverage required 181 

for base calling in our consensus genomes, despite the heavily mutated S gene of Omicron and 182 
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subvariants thereof (Figure S9). Together, these results show that the Virseq assay is a stable and 183 

effective sequencing strategy and is a critical component of our surveillance apparatus. However, 184 

while we are confident in our response to variant outbreaks thus far, it is imperative that proactive 185 

measures are taken to preclude future surveillance interruptions. 186 

Modeling the performance of the Virseq assay by simulation 187 

One challenge of sustaining continuous whole genome surveillance is the need to predict changes 188 

in sequencing performance that may occur and its effect on the characterization of the pathogen 189 

variants. Many SARS-CoV-2 lineages emerge in regions outside of our surveillance network (i.e. 190 

in countries other than U.S.) and may be too rare for detection once they initially spread to our 191 

surveilled regions. To address this challenge, we developed a Virseq performance simulator that 192 

models our entire production process from raw reads to PANGO lineage determination, capturing 193 

the sequencing and other systematic errors that might propagate into consensus genomes. This 194 

simulator was constructed using a representative batch of samples and incorporates the per-base 195 

coverage and minor allele fractions commonly observed at each genomic position (Methods, 196 

Figure S10). Application of this simulator begins with an input sequence that is then mutated to 197 

reflect any errors introduced by our production process, which can then be compared with the 198 

original sequence via concordance analysis of their PANGO lineage determinations. 199 

We routinely use this simulator to monitor newly designated lineages in the PANGO 200 

nomenclature (largely VOCs) as well as randomly selected sequences from previous months of 201 

surveillance, leveraging the GISAID database20. This routine monitoring mechanism is a crucial 202 

component of our FDA EUA and could be used to help maintain future pandemic surveillance 203 

networks. In this study, we expanded this analysis to include up to 100 sequences each from 1,899 204 

VOCs (97,421 total sequences, ‘VOC experiment’) and descendant lineages thereof, current and 205 
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former, and 10,000 randomly selected sequences from each month spanning from January 2021 206 

until July 2023 (310,000 total sequences, ‘retrospective experiment’) (Methods). As expected, we 207 

observed similar coverage profiles between the two experiments and the simulator model, 208 

indicating that the simulated genomes accurately reflected Virseq-generated sequences (Figure 209 

S10b). When assessing the PANGO lineage concordance between the simulated and original 210 

genomes, we first checked for exact matches then also checked for parent/child relationships 211 

between the lineages compared (e.g. BA.5 is a parent of the child BA.5.1), deeming these parent 212 

matches (Methods). 213 

Overall, we observed strong concordance in both the retrospective (99.55% exact, 99.97% 214 

parent) and VOC experiments (99.06% exact, 99.84% parent) (Figure 5). In the retrospective 215 

experiment we observed strong concordance across all 31 months analyzed with some month-to-216 

month fluctuations (>98.95% exact, >99.9% parent) (Figure 5a). We also observed that some 217 

fluctuations coincided with shifts in circulating lineage diversity and the timing of VOC 218 

emergences (Figure 4, Figure 5a). Intriguingly, while some VOC emergences resulted in slight 219 

reductions of concordance (BA.1, BA.4/BA.5), others counterintuitively coincided with improved 220 

concordance (BA.2, BQ, XBB.1.9/XBB.1.16) (Figure 4, Figure 5a). 221 

When assessing the concordance of individual VOCs, we found that 98.21% (1,865) and 222 

99.63% (1,892) of VOCs had >90% exact and parent lineage concordance, respectively (Figure 223 

5b). In total, we observed seven VOCs with a small number of discordant calls, and four of these 224 

(BA.2.2.1, BA.5.10, BQ.1.19, and BY.1) had UShER tree placement conflicts with their designated 225 

hashes, i.e. these sequences were representative of those lineages but could not be placed 226 

accordingly in the UShER tree (Table 1). This indicated that the original sequences of these VOCs 227 

had unstable PANGO lineage designations. For example, one of four simulated BA.2.2.1 228 
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sequences was called a BA.1, and we later found that the original sequence was hashed as BA.2.2.1 229 

but placed in the UShER tree as BA.1 (Table 1). Inspection of the other three VOCs revealed that 230 

they were recombinants with discordant calls corresponding to one of the recombined lineages 231 

(Table 1), indicating that the simulated genomes had a loss of resolution. 232 

We then investigated features of the simulated genomes, including key drivers of 233 

discordant lineage calls. As expected, we found that genome coverage was significantly lower 234 

among genomes that had discordant lineage calls or that were only parent concordant compared to 235 

those with exact concordance in both experiments (p<0.001 in all comparisons, Wilcoxon rank-236 

sum test, Figure S11a-b). Both experiments yielded similar genomic positional dependence of 237 

consensus genome errors (Figure S11c), and these errors were often found in regions modeled 238 

with poor coverage (5’/3’ peripheral genomic regions) instead of positions modeled with higher 239 

base calling errors (Figure S11d-e). These simulation experiments collectively show that the 240 

Virseq assay generates consensus genomes with accurate PANGO lineage designations and that 241 

accuracy is predominantly driven by genomic coverage, which is expected behavior for the 242 

pangolin software in general29. This Virseq simulator is a crucial component of our surveillance 243 

apparatus, ensuring that we anticipate potential sequencing interruptions and serving as a model 244 

for viral sequencing simulators in general. 245 

Detection and haplotype phasing of SARS-CoV-2 mixtures 246 

The concurrent circulation of multiple lineages of the same virus during a pandemic may result in 247 

co-infections of different viral lineages, which in some cases result in more severe clinical 248 

outcomes in COVID-19 patients30. Thus, another requirement for effective surveillance machinery 249 

is the ability to distinguish and characterize co-infections, which may complicate consensus 250 

genome generation and PANGO lineage determination. After an initial finding of within-host 251 
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SARS-CoV-2 diversity31, reports emerged describing patients likely co-infected with co-252 

circulating SARS-CoV-2 lineages32–37. Since our SARS-CoV-2 whole genome sequencing dataset 253 

robustly captures these pandemic-wide trends in circulating lineages (Figure 2) and is highly 254 

stable (Figure 4, Figure 5), we posited that recovery of multiple SARS-CoV-2 lineage detections 255 

from the same sample would be possible. 256 

To identify these potential mixtures (i.e. co-infections), we developed a custom workflow 257 

utilizing freyja14, an off-the-shelf mixture deconvolution algorithm (Methods). We found that 258 

deeply sequenced samples (20.7% or 123,373 of 594,832) produced stable lineage mixture results 259 

(>99% genome coverage, 100% S gene coverage, and average depth of coverage > 200X) (Figure 260 

S12a). We then imposed three criteria for a sample to be classified as a mixture. The first two 261 

require the most and second most abundant lineages to have relative abundances no greater than 262 

0.8 and no less than 0.2, respectively, which only 571 (0.46% of 123,373) samples satisfied (Figure 263 

S12b-c). Thirdly, we required the mixed lineages to differ by at least three defining SNPs 264 

(heretofore defined as ‘discriminating SNPs’), since such mixtures were found to have stronger 265 

concordance between lineage relative abundances and discriminating SNP allele fractions Figure 266 

S12d-f). This process yielded a final confident set of 379 mixtures (Supplementary Data) likely 267 

of similar quality to their non-mixture counterparts, as they were found to have similar median 268 

depth of coverage (mixtures: 338.4, non-mixtures: 335.6, p=0.46, Wilcoxon rank-sum test) 269 

(Figure S12g). These mixtures had similar Ct values as non-mixtures, with the same differences 270 

observed between the BA.1 wave samples and those before and afterwards (Figure S3c). We also 271 

found that these mixtures had lineage compositions concordant with the original lineage called by 272 

pangolin29, since in most cases the pangolin-derived lineage either closely matched the majority 273 
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mixture lineage (217 or 57.3%) or was a parent of both majority and minority mixture lineages 274 

(142 or 37.5%) (Figure S13). 275 

 Not surprisingly, we detected a plurality of mixtures during the BA.1 wave (159 or 42%), 276 

which represents the largest portion of the dataset analyzed (18% or 22,169 samples). We also 277 

observed the highest prevalence of mixtures during the BA.1 wave, peaking at 1.4% the last week 278 

of December 2021 (Figure 6a). When categorizing the lineages comprised by these mixtures using 279 

their lineage groups, we found that most mixtures were of lineages from the same group (347 or 280 

91.6%), e.g. BA.1* mixed with BA.1* (Figure 6b, Table S2). This is likely due to variants 281 

emerging in blocks (Figure 2), though we did observe some mixtures of different lineage groups 282 

collected during the transitions between these blocks, e.g. one Delta*-Mu* and three BA.1*-Delta* 283 

mixtures (Figure 6b, Table S2). 284 

 Since these mixtures have robust sequencing depth (Figure S12g) and comprise lineages 285 

with as many as 77 discriminating SNPs (Supplementary Data), we hypothesized that it would 286 

be feasible to resolve lineage haplotypes. Using a standard haplotype phasing tool for long reads 287 

(Methods), we were able to produce haplotype blocks in most mixtures (277 or 73.1%), favoring 288 

mixtures harboring discriminating SNPs greater in number and closer together (Figure 6c). We 289 

also developed a custom approach that employs a greedy strategy to merge haplotype blocks 290 

together based on the alleles of the discriminating SNPs in each haplotype block (Methods). This 291 

greatly increased haplotype block resolution, on average increasing the number of SNPs in the 292 

largest (merged) haplotype block by ~100% and increasing the size of haplotype blocks to as long 293 

as 15.8kbp (Figure 6d-e). These exceptionally large haplotype blocks were found among the 294 

BA.1*/Delta* mixtures, which have the largest number of discriminating SNPs among the 295 

mixtures identified (Supplementary Data). One example is LC0471172, which is a mixture of 296 
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BA.1.1.18 and AY.39 that had a final merged haplotype block of length 15.8kbp harboring 61 SNPs 297 

and spanning most of ORFs 1a and 1b as well as the entire S gene and 3’ end of the genome (Figure 298 

S14). These rare, finely resolved mixture haplotypes are evidence that combining haplotype 299 

reconstruction with mixture analysis has potential to unveil unique sample characteristics. This 300 

mixture analysis workflow thus provides our surveillance apparatus with the essential ability to 301 

detect co-infections and ensures that consensus genomes are correctly reported in such cases. 302 

Discussion 303 

Genomic surveillance, globally and through our contribution to CDC SPHERES, proved to be 304 

critical for monitoring the emergence of highly mutated SARS-CoV-2 variants and their potential 305 

influence on disease severity38 and the hundreds of vaccine development efforts worldwide (183 306 

in clinical development as of March 30, 202339). In this report we showcased our robust, 307 

comprehensive U.S.-based SARS-CoV-2 surveillance network enabled through our infrastructure 308 

and sequencing capabilities. Our probe-based tiling of the genome precluded surveillance 309 

interruptions, while other amplicon-based assays have required multiple updates10. However, 310 

while our tiled approach has ensured robust lineage detection so far, there is always a possibility 311 

that an emerging novel lineage may introduce mutations that could potentially affect our ability to 312 

detect it. To address this uncertainty we routinely assess emerging SARS-CoV-2 lineages using 313 

our Virseq assay simulator before they are widely circulating among the U.S. population. These 314 

resources ensure that we are prepared to swiftly respond to any sudden and/or large mutations in 315 

the SARS-CoV-2 genome. 316 

 One key feature of our surveillance network is the rapid sequestration and consolidation of 317 

high viral titer samples before sequencing. This strategy could in theory be applied to any 318 
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infectious agent for which we or others have robust diagnostic assays. In the case of SARS-CoV-319 

2 in this study we apply an N1 Ct value upper limit for sample inclusion to guarantee sufficient 320 

genetic material for whole genome sequencing. While necessary for sequencing feasibility, this 321 

thresholding may introduce bias in the sample selection and comprehensive lineage coverage. 322 

Another important aspect of our surveillance is the dense network of various Labcorp® testing 323 

centers throughout the U.S. In this study we that show our SARS-CoV-2 diagnostic samples come 324 

from all HHS regions and are sent for whole genome sequencing through our Virseq assay with 325 

limited bias. Importantly, this comprehensive demographic coverage is contingent on the 326 

availability of samples from our testing centers, which could potentially change due to myriad 327 

factors such as local mandates and/or health care coverage. 328 

 Our targeted long-read sequencing approach is also equipped for recovery of haplotype-329 

resolved viral genomes. To our knowledge, our study is the first to provide a pandemic-wide, high-330 

resolution evaluation of co-infections at this scale, though there have been other systematic efforts 331 

that are smaller40 or target specific types of co-infections, e.g. Omicron/Delta37. A crucial step in 332 

confirming co-infections is the haplotype phasing of observed heterozygous mutations, which is 333 

generally limited to long-read sequencing approaches described here with PacBio® sequencing and 334 

by others using Oxford Nanopore Technologies®41. In our study we observe most co-infections 335 

from the same lineage group (e.g. BA.1*/BA.1*), likely representing individuals who were 336 

exposed to unique variants in rapid succession rather than those who are chronically ill from a 337 

previous infection. These co-infections may not only have clinical relevance30, but also represent 338 

potential recombination events. For example, the BA.1 wave showed the highest prevalence of co-339 

infections in our dataset and incidentally introduced numerous recombinants, including those 340 

formed from Delta and BA.142–44. Ultimately, the use of long reads is uniquely suited for 341 
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distinguishing co-infections from these recombinant cases as well as other sources of intra-host 342 

variation of the virus that have been described31. 343 

 The surveillance apparatus we describe is not only robust to the pandemic undulations but 344 

is also flexible and modular. For example, we recently adapted this workflow to employ an Oxford 345 

Nanopore Technologies®-based ClearLabs® sequencing approach in lieu of our probe-based long-346 

read (PacBio®-based) sequencing approach. This alternative EUA approved pipeline enables rapid 347 

turnaround time (~1 day) and retains the same suite of analytical tools as our primary surveillance 348 

apparatus. We have also leveraged our infrastructure to provide additional features beyond 349 

monitoring SARS-CoV-2 genetic evolution. Early in the COVID-19 pandemic it became clear that 350 

convalescent sera from COVID-19 survivors would be essential for development of antibody 351 

therapies45. We and others analyzed sera specimens collected from over 3,000 unvaccinated 352 

individuals and found that most did not exceed antibody concentrations associated with 90% 353 

vaccine efficacy, indicating that vaccination is necessary for maximum protection against SARS-354 

CoV-2 infection46. We also use our infrastructure to systematically obtain sera from individuals 355 

recently infected with SARS-CoV-2 VOCs as part of multiple efforts to investigate antibody cross-356 

reactivity, which is essential for development of COVID-19 vaccine boosters. 357 

 As the threat of COVID-19 wanes and global SARS-CoV-2 surveillance networks scale 358 

back, there is a strong need for continued development of rapid response tools. Diagnostics that 359 

target multiple pathogens, such as our seasonal respiratory panel47, are increasingly useful to this 360 

end. These diagnostics may serve as outbreak detection tools when their negativity rate spikes, 361 

indicating the emergence of a novel pathogen. Agnostic surveillance techniques, such as those 362 

monitoring wastewater via shotgun sequencing13–15,17, have already shown promise by detecting 363 

Poliovirus Type 2 in New York wastewater48. If an outbreak does not immediately attenuate, then 364 
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our surveillance apparatus described in this study could serve as a model for sustained monitoring 365 

of whole genome variations that could impact disease severity, outbreak dynamics, and the 366 

efficiency of targeted diagnostic assays. 367 

 In this retrospective study, we showcase our unique positioning for rapid development and 368 

maintenance of robust pathogen surveillance. Our nationwide surveillance network and its suite of 369 

analytical and sequencing components collectively serve as a model for future large-scale 370 

surveillance efforts. Looking to the future, it is our mission to stay vigilant and continue refining 371 

this model to combat the many emergent infectious diseases posing imminent threats to public 372 

health. 373 

Methods 374 

Ethical Statement 375 

The use of residual de-identified samples for this study was determined as not a human subject 376 

research requiring IRB review. 377 

SARS-CoV-2 surveillance and whole genome sequencing 378 

Extracted total nucleic acid from positive specimens identified through the Labcorp® FDA EUA 379 

approved COVID-19 RT-PCR Test or SARS-CoV-2 & Influenza A/B Assay Test were sequestered 380 

and consolidated using a Hamilton Microlab® STAR™ instrument and plate selector app, retaining 381 

only positive samples with N1 Ct values less than 31. Sample RNA was reverse transcribed to 382 

cDNA and a specially designed SARS-CoV-2 probe set containing ~1000 tiled Molecular Loop® 383 

Loopcap™ Molecular Inversion Probes (MIPS) was used to amplify the cDNA from 99.6% of the 384 

SARS-CoV-2 genome with most bases covered by 22 MIPs19. The product synthesized in-between 385 
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the MIPs was enriched and had sample specific molecular barcodes added via amplification for 386 

long-read sequencing on a Pacific Biosciences® Sequel II™49. 387 

Sequence quality control and post-processing 388 

After sequencing, circular consensus sequence (CCS) bam files were generated using the PacBio® 389 

SMRT LINK™ software v9.0 ccs program50 and subsequently demultiplexed using lima with the 390 

following parameters: “--min-score-lead -1”, “--min-score 80”, “--window-size-multi 1.1”, “--391 

neighbors”. Molecular Loop® barcodes were then trimmed by aligning sequences to barcodes 392 

using pbmm2 with parameters “--sort” and “--preset HIFI” and custom processing scripts. Final 393 

sample fastq files were generated by converting the resulting bam files using BamTools51. 394 

Sequence fastq files were analyzed using a genome analysis pipeline implemented in the 395 

CLC Genomics Server version 9.1.152. This workflow starts with a sample-level fastq file and uses 396 

Minimap253 to align reads to the SARS-CoV-2 reference genome (NCBI GenBank reference 397 

NC_045512.2) to generate a bam file of the alignment as well as a VCF file containing the variants 398 

called using a custom variant caller in CLC. A consensus sequence for each sample was then 399 

generated using VCFCons v8.5.054. When VCFCons calls a nucleotide sequence for genome 400 

construction it was required to have least 4 CCS reads covering that base pair and an alternate 401 

allele frequency compared to the reference of at least 80%. If the alternate allele frequency was 402 

between 20% and 80%, then the appropriate ambiguous IUPAC nucleotide was called. If a 403 

nucleotide was covered by less than 4 CCS reads it was reported as ambiguous (N) in the consensus 404 

sequence. 405 

Three different coverage quality control metrics were used to ensure high accuracy of 406 

resulting consensus genome sequences. Firstly, the median CCS read coverage was calculated 407 

separately for 29 ~1kb genomic regions and each sample was required to have at minimum 10X 408 
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mean of median amplicon coverage (depth of coverage). For samples to be kept for downstream 409 

Phylogenetic Assignment of Named Global Outbreak (PANGO) lineage determination18 and 410 

sequence analysis, a minimum genome coverage of 50% was required. For sample genome 411 

sequences to be reported to the CDC (and later deposited to GISAID20), a more stringent genome 412 

coverage threshold of 90% was applied along with a third coverage filter that required no more 413 

than 1 ambiguous base call in each 6bp sliding window of the S gene. Furthermore, samples were 414 

reported within 21 days of collection. 415 

Sample consensus genome sequences with at least 10X depth of coverage and genome 416 

coverage of at least 50% were further analyzed using pangolin software29 (v4.3.1 with pangolin 417 

data v1.22) and the UShER algorithm55 with default parameters to determine SARS-CoV-2 418 

PANGO lineages. Sequences and their mutations were also characterized using Nextclade 419 

v2.14.056 and the Nextclade SARS-CoV-2 dataset compiled on August 9th, 2023. In all subsequent 420 

analyses, PANGO lineages were assigned groups by a pre-determined set of parent lineages, 421 

representing key variants of concern (VOCs) throughout the pandemic. A lineage and its 422 

descendants are indicated by appending “*”. When a lineage is a descendant of two of the 423 

following parent lineage groups, the closest parent was selected. If a lineage was not a descendant 424 

of any of the parents, then it was placed in the “other” group. Parent lineage groups are as follows: 425 

Alpha (B.1.1.7*), Beta (B.1.351*), Gamma (P.1*), Epsilon (B.1.427* and B.1.429*), Eta 426 

(B.1.525*), Iota (B.1.526*), Kappa (B.1.617.1*), Mu (B.1.621*), Zeta (P.2*), Delta (B.1.617.2*), 427 

BA.1*, BA.2*, BA.4*, BA.5*, BQ*, XBB*, XBB.1.5*, XBB.1.9*, and XBB.1.16*. 428 

Demographic and phylogenetic analysis 429 

Time-resolved phylogenetic analysis of SARS-CoV-2 consensus genome sequences was 430 

performed using augur v.22.2.057 and auspice.us v0.12.0 (Auspice 2.49.0) within the Nextstrain 431 
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framework58. Consensus genomes were restricted to those with 100% S gene coverage and at least 432 

99% genome coverage sequenced between January 2021 and June 2023. The augur filter utility 433 

was used to limit the dataset to a maximum of 1,000 sequences per month each with metadata 434 

including sample collection date and PANGO lineage. Next, the augur refine utility was used to 435 

create a time-resolved phylogenetic tree using the TreeTime algorithm59. Finally, the resulting tree 436 

was annotated with lineage information using the augur export utility, and the final tree was 437 

displayed on auspice.us. 438 

Age and gender distributions of all samples in this study with consensus genomes passing 439 

the minimal coverage criteria for PANGO lineage determination were analyzed, restricting to those 440 

collected between January 2021 and June 2023 with weekly sample counts of at least 100. 441 

Distributions were also stratified by U.S. HHS regions60. For each region, annual gender 442 

proportions were calculated, and age distributions were determined by aggregating ages into 443 

different groups as follows: 0-17 (pediatrics), 18-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 444 

and 80 or older. 445 

RT-PCR sampling, positivity, and N1 Ct value analysis 446 

Demographic data and positive/negative results of RT-PCR samples collected through the 447 

surveillance network described in this study were aggregated for multiple analyses. First, the RT-448 

PCR sampling was compared with Virseq assay sampling across each HHS region and month 449 

where at least 100 Virseq samples were sequenced. The geographic distribution of RT-PCR and 450 

Virseq sampling were also independently assessed by normalizing with U.S. state census data from 451 

2020-202261. Census data from 2023 was estimated by averaging that from 2020-2022. Overall 452 

RT-PCR positivity was analyzed weekly and was also stratified by gender and age groups 453 

(described in Methods section ‘Demographic and phylogenetic analysis’). N1 Ct values of Virseq 454 
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samples were analyzed weekly and stratified based on whether samples were collected before or 455 

after the Omicron wave (November 2021 to February 2022), denoted as ‘pre-wave’, ‘Omicron 456 

wave’, and ‘post-wave’. N1 Ct values were also compared based on co-infection status using only 457 

deeply sequenced samples from the co-infection analysis described later in Methods section 458 

‘Workflow for detection and characterization of SARS-CoV-2 mixtures’. 459 

Whole genome coverage and mutation frequency analysis 460 

Genome-wide assessment of SARS-CoV-2 sequence mutation frequencies was performed using 461 

all results obtained from Nextclade v2.14.056 for samples passing minimal coverage quality 462 

control. Mutations were considered as “lineage-defining” if they appeared in at least 70% of the 463 

genome sequences assigned to that lineage. The number of mutations with at least 5% prevalence 464 

across the entire genome and within specific SARS-CoV-2 genic regions was calculated for each 465 

sample collection week. Circulating lineage diversity was calculated in each week using unique 466 

lineage counts and the Shannon entropy implementation in the vegan R package62. In all analyses 467 

that indicate dominant lineage groups during specific time periods, this was calculated using the 468 

first week where at least 5% of the lineages were assigned to that lineage group. In the case of 469 

XBB.1.9 and XBB.1.16, these were combined, and the sum of their occurrences was used. 470 

Per-base CCS coverage analysis was performed using selected VOCs (B.1.1.7, B.1.617.2, 471 

BA.1, BA.2, BA.4, BA.5, BQ.1, and XBB.1.5), where the sequences chosen were required to have 472 

depth of coverages of 100 +/- 10. 50 sequences were randomly chosen for each VOC that met the 473 

coverage constraint and had the exact PANGO lineage determination of the VOC. Per-base 474 

coverage was determined using Samtools63 depth with parameters “-q 0 -Q 0” applied to the sample 475 

alignment bam files. Median per-base coverage was then calculated for each VOC and smoothed 476 

using a 30bp sliding window. Lineage defining mutation density was also determined for each 477 
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VOC by enumerating mutations at each genomic position and smoothing over a 1kbp sliding 478 

window. 479 

Virseq performance simulator 480 

The Virseq pipeline performance was assessed by constructing a process whereby an input whole 481 

genome sequence is mutated in a manner that simulates the coverage and errors introduced by 482 

sequencing and post-processing analysis. This simulator was constructed using coverage and error 483 

models of a representative sequencing batch selected from February 2022 containing 520 samples 484 

reported to CDC (Supplementary Data). The coverage model was designed using a min max 485 

normalization strategy, where two components were stored for later application of the model: 1) a 486 

list of each sample’s maximum per-base coverage and 2) the mean min max normalized coverage 487 

at each position of the genome. In practice, since the peripheral 5’ and 3’ ends of the genome do 488 

not have tiled coverage by design, a sample’s min max normalized coverages equate to positional 489 

coverage divided by the maximum per-base coverage. The error model was generated under the 490 

assumption that the consensus at each base position is the correct base call. Thus, the probability 491 

of an error was calculated using the maximum minor allele frequency. At each genomic position 492 

the number of each base call was enumerated in R using Rsamtools64 to identify the error rates for 493 

each sample, and the mean error rate at each position was recorded. If the median coverage at a 494 

position was less than 3, then the global median error rate was used. If the error rate was zero (i.e. 495 

there were not any alternate base calls at a position), then half of the global minimum non-zero 496 

error rate was used instead. 497 

These two models were collectively applied to an input SARS-CoV-2 whole genome 498 

sequence first by identifying positional coverages. A maximum coverage was randomly selected 499 

from the list obtained from the representative batch and the expected mean coverage was computed 500 
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at each position by multiplying this maximum coverage by each pre-computed mean positional 501 

fractional coverage. Next, the coverage at a position was sampled from a Poisson distribution using 502 

the mean obtained in the prior step. If the sampled coverage was less than the minimum per-base 503 

coverage threshold of 4, then an ambiguous base call was simulated at that position (see Methods 504 

section ‘Sequence quality control and post-processing’). Next, for all remaining unambiguous 505 

positions a consensus base call was simulated using the sampled coverage and the pre-computed 506 

average error at each position. Bases were sampled using a cumulative binomial using the average 507 

error and coverage, and if the number of errors exceeded half of the base calls a random base was 508 

called at the position; otherwise, the reference base was used. Finally, the PANGO lineages were 509 

determined for both the original and simulated sequence using pangolin software29 (v4.3.1 with 510 

pangolin data v1.22) and checked for concordance. If the lineages were identical, the result was 511 

considered an ‘exact match’. If one lineage was a descendant of the other, then the result was 512 

categorized as a ‘parent match’. All other cases were considered ‘discordant’. 513 

Two simulation experiments were used to assess the performance of the Virseq pipeline. 514 

Sequences were retrieved from GISAID20 (accessed August 25th, 2023) and those used in the 515 

experiments were restricted to those with at least 99% genome coverage, ensuring high quality 516 

lineage calls. The first experiment assessed up to 100 sequences from each VOC and descendant 517 

lineages thereof, current and former, designated in pangolin data v1.22. The second experiment 518 

used a random selection of 10,000 sequences from each month ranging from January 2021 to July 519 

2023. 520 

Workflow for detection and characterization of SARS-CoV-2 mixtures 521 

A custom workflow was developed to detect and characterize samples containing more than one 522 

unique PANGO lineage, i.e. mixtures or co-infections. All bam files of samples passing minimum 523 
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coverage metrics were processed through the recommended freyja14 processing workflow, first 524 

calling variants using iVar65 and subsequently using the freyja demixing algorithm14 to determine 525 

the lineage abundances in each sample. This algorithm attempts to identify a parsimonious set of 526 

lineages best explaining the UShER55 defining single nucleotide polymorphisms (SNPs) detected 527 

in the sample. 528 

Lineage abundances were then processed, greedily aggregating abundances of lineages 529 

with parent/descendant relationships (e.g. BA.1 and BA.1.1) starting with the most abundant 530 

lineage. This was performed since one lineage would have UShER55 defining SNPs forming a 531 

subset or superset of the other lineage, and it was assumed that this splitting of highly similar 532 

lineages was due to sequencing noise. Samples were then filtered, requiring an empirically 533 

determined minimum depth of coverage where the rate of mixture detection was stable and low 534 

(Supplementary Figure 12a). Mixtures were then required to satisfy three criteria: 1) Top lineage 535 

relative abundance no greater than 0.8, 2) second lineage relative abundance no less than 0.2, and 536 

3) minimum of 3 UShER55 defining SNPs discriminating the two lineages comprising the mixture 537 

(Supplementary Figure 12b-f). Each resulting mixture sample was then categorized using the 538 

parent lineage groups of the two mixed lineages (see Methods section ‘Sequence quality control 539 

and post-processing’). 540 

Mixture samples were then processed using WhatsHap66, a standard haplotype assembly 541 

tool suitable for long sequencing reads. If a sample did not yield any haplotype blocks (i.e. no two 542 

SNPs were phased), then analysis was halted. If only a single haplotype block was obtained, then 543 

the block length and phased mutations therein were recorded. If a sample had at least two haplotype 544 

blocks, then a greedy algorithm was applied to merge these blocks while leveraging a priori 545 

mixture knowledge yielded by freyja14. The number of UShER55 defining SNPs unique to each 546 
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mixture lineage (i.e. lineage-discriminating SNPs) was recorded for each block, and blocks were 547 

iteratively merged in order of descending number of lineage-discriminating SNPs (ties broken by 548 

using the larger block length). Blocks were merged to maximize the number of correctly phased 549 

lineage-discriminating SNPs. If the addition of a block to this greedily merged block didn’t 550 

improve this optimization criterion, then it was skipped, and the next block was assessed. This 551 

process continued until no further blocks with lineage-discriminating SNPs remained. A custom 552 

script was used to modify the haplotagged bam output by WhatsHap66 for visualization of merged 553 

haplotype blocks in Integrative Genomics Viewer v2.16.267. 554 
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Figure Legends 741 

Figure 1. Journey of a sample from raw nasopharyngeal and nasal swabs to CDC reporting. 742 

a) Overview of end-to-end genomic surveillance setup. b) Consolidation of positive high viral titer 743 

samples. c) Probe amplification protocol. d) Long read sequencing analysis and bioinformatics 744 

workflow to prepare high-quality SARS-CoV-2 genomic sequences with demographic metadata 745 

for CDC. 746 

Figure 2. SARS-CoV-2 PANGO lineage analysis of 594,832 high-quality genomes from USA 747 

samples collected between January 2021 and July 2023. In each plot samples are grouped and 748 

colored by the closest parent listed on the top left. a) Time-resolved phylogeny of a subset of 749 

samples (n=28,069) clustered based on the oldest collected sample with at most 1,000 samples per 750 

month. b) SARS-CoV-2 lineage proportions across weeks with at least 100 samples (left y-axis) 751 

and the PCR positivity rate (%) indicated by the black line (right y-axis). 752 

Figure 3. U.S. nationwide SARS-CoV-2 genomic surveillance consisting of 594,832 high-753 

quality genomes from samples collected between January 2021 and July 2023. In both panels, 754 

the U.S. is divided into 10 Health and Human Services (HHS) regions, each in separate colors. a) 755 

Each state is notated by its two-letter abbreviation and the shade indicates the number of samples 756 

collected. Each region uses a shared color gradient, shown on the right in grayscale with maximum 757 

and minimum values of 19,000 and 1,000, respectively. b) Line plots showing the ratio of Virseq-758 

generated genomes versus the total SARS-CoV-2-positive RT-PCR samples collected on the log2 759 

scale over each sample collection month. January 2021 and July 2023 were excluded, as they each 760 

have fewer than 100 Virseq-generated genomes in the dataset analyzed. Vertical black lines denote 761 

the start of years 2022 and 2023. 762 
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Figure 4. Pandemic-wide trends in SARS-CoV-2 genomic mutations and the robustness of 763 

whole genome probe-based sequencing. a) Number of mutations with at least 5% prevalence in 764 

the lineage population (black) and circulating lineage shannon diversity (red). b) Number of 765 

mutations with at least 5% prevalence in the lineage population separated by genic origin. c) 766 

Heatmap showing the genome-wide probe coverage of the most common lineage in circulation for 767 

each collection week with genomic positions shown 5' (bottom) to 3' (top). Probes were considered 768 

failures if a deletion, insertion, or >3 SNPs were detected in either probe arm. Large genic regions 769 

(ORF1a, ORF1b, S) are indicated by horizontal lines and are labeled on the right. In all panels, 770 

results are stratified by sample collection week with vertical bars separating the major waves of 771 

the pandemic with the causal variant shown above. Waves are demarcated using the collection 772 

week when the causal variant first reached 5% prevalence. 773 

Figure 5. Virseq simulation results. Exact and parent concordance for the retrospective (a) and 774 

VOC (b) simulation experiments. Retrospective results are shown with exact (red) and parent 775 

(blue) concordance as separate lines over the sample collection months analyzed, with years 776 

demarcated by vertical lines. VOC results are shown with exact and parent concordance results for 777 

each VOC data point with 90% thresholds marked by dashed red lines. VOCs colored black have 778 

>90% exact concordance, those colored yellow only have >90% parent concordance, and those 779 

colored red are below both concordance thresholds. Vertical gray bars separate the major waves of 780 

the pandemic with the causal variant shown above. Waves are demarcated using the collection 781 

week when the causal variant first reached 5% prevalence. 782 

Figure 6. Haplotype phasing of SARS-CoV-2 mixture samples (i.e. coinfections). a-b) 783 

Prevalence and number of mixtures in each sample collection week with major pandemic waves 784 

demarcated as they were in Figure 3. In (a), the weekly average (~0.2%) is shown as a horizontal 785 
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dashed red line. In (b), mixtures are colored based on the lineage family of the major and minor 786 

mixture components, e.g. BA.1*-Delta indicates a mixture of BA.1 and Delta sublineages with 787 

majority BA.1. c) Sample-level comparison of the number of and minimum distance between 788 

UShER defining mutations that discriminate the two mixture lineages. Samples are colored based 789 

on their number of defining mutations phased: >1 phased (black, n=149), 1 phased only with non-790 

defining mutation(s) (yellow, n=128), and 0 phased (red, n=102). d) Comparison of sample 791 

defining mutation phasing among largest resolved haplotype blocks. Results are compared 792 

between original whatshap haplotype blocks and those same haplotype blocks merged using freyja 793 

mixture results. e) The number of defining mutations phased and the lengths of sample merged 794 

haplotype blocks. 795 

TABLES 796 

Table 1. Summary of VOCs with more frequent discordant PANGO lineage calls. Each row shows 797 

a lineage with < 90% parent concordance and the most common discordant lineage observed 798 

among the simulated sequences. 799 

PANGO lineage Concordance (%) 
Total sequences 

analyzed 

Most common discordant 

lineage 

BA.2.2.1 75.00% 4 BA.1 

BA.5.10 60.00% 10 BA.5.2 

BQ.1.19 75.00% 4 BQ.1.2 

BY.1* 86.67% 15 BA.2.75.7 

XB* 55.00% 100 B.1 

XBV* 78.57% 14 XBB.1 

XP* 85.71% 7 BA.1.1 

* BY is the alias of BA.2.75.6. XB, XBV, and XP are the following recombinants, respectively: 800 

B.1.634/B.1.631, CR.1/XBB.1, and BA.1.1/BA.2.  801 
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