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Abstract

Among the most common cancers, colorectal cancer (CRC) has a high death rate. The
best way to screen for colorectal cancer (CRC) is with a colonoscopy, which has been
shown to lower the risk of the disease. As a result, Computer-aided polyp classification
technique is applied to identify colorectal cancer. But visually categorizing polyps is
difficult since different polyps have different lighting conditions.

Different from previous works, this article presents Enhanced Scattering Wavelet
Convolutional Neural Network (ESWCNN), a polyp classification technique that
combines Convolutional Neural Network (CNN) and Scattering Wavelet Transform
(SWT) to improve polyp classification performance. This method concatenates
simultaneously learnable image filters and wavelet filters on each input channel. The
scattering wavelet filters can extract common spectral features with various scales and
orientations, while the learnable filters can capture image spatial features that wavelet
filters may miss.

A network architecture for ESWCNN is designed based on these principles and
trained and tested using colonoscopy datasets (two public datasets and one private
dataset). An n-fold cross-validation experiment was conducted for three classes
(adenoma, hyperplastic, serrated) achieving a classification accuracy of 96.4%, and
94.8% accuracy in two-class polyp classification (positive and negative). In the
three-class classification, correct classification rates of 96.2% for adenomas, 98.71% for
hyperplastic polyps, and 97.9% for serrated polyps were achieved. The proposed
method in the two-class experiment reached an average sensitivity of 96.7% with 93.1%
specificity.

Furthermore, we compare the performance of our model with the state-of-the-art
general classification models and commonly used CNNs. Six end-to-end models based
on CNNs were trained using 2 dataset of video sequences. The experimental results
demonstrate that the proposed ESWCNN method can effectively classify polyps with
higher accuracy and efficacy compared to the state-of-the-art CNN models. These
findings can provide guidance for future research in polyp classification.
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Introduction 1

According to statistics [1] [2], colon and rectal cancers (CRC) are the most common 2

types of cancers. Some polyps (adenomas) have the potential to develop into cancer. 3

Therefore, it is crucial to detect and remove polyps from the body to mitigate the risk of 4

cancer. Early diagnosis and removal of polyps significantly reduce the risk of CRC [3]. 5

Colonoscopy is considered the gold standard for detecting and identifying polyps. 6

The accuracy of classification depends on the skills and experience of the endoscopists. 7

However, the diagnostic performance is limited, and up to 3.7% of CRC cases are 8

post-colonoscopy or interval CRCs, which are CRCs diagnosed within three years after a 9

normal colonoscopy [4]. One of the contributing factors to this issue is the prolonged 10

duration of colonoscopy procedures, which can lead to mental and physical fatigue in 11

human operators, resulting in degraded analysis and diagnosis. Other factors that may 12

impact classification results include variations in illumination conditions, texture, 13

appearance, and occlusion [5]. Additionally, since the appearances of different types of 14

polyps are very similar, as depicted in Fig 1. , distinguishing between various types of 15

polyps can be challenging. 16

In recent years, there has been a growing interest in the development of 17

Computer-Aided Diagnosis (CAD) systems for automatic polyp detection and prediction 18

of histology. The classification of polyp images has been achieved by CAD systems 19

based on Machine Learning (ML). Tamaki et al. proposed a CAD system to classify 20

colorectal tumors in Narrow Band Imaging (NBI) endoscopy using local features [6], 21

achieving an accuracy of 96% on a 10-fold cross-validation using a dataset of 908 NBI 22

images and 93% using an independent test dataset. It is important to note that these 23

ML-based architectures consist of feature extraction and a classifier, and the systems 24

require extensive preprocessing of the image datasets to extract the relevant features of 25

the polyp images. Most ML-based methods have utilized Principal Component Analysis 26

(PCA) [8] [9], Direction Discrete Wavelet Transform (DWT) [7], K-Nearest Neighbor 27

(KNN) [29], and support vector machine (SVM) [12] based on handcrafted features. For 28

example, the extraction of edge features detected in the images and their regions 29

enables automated polyp detection via a classification system [11]. Local Fractal 30

Dimension (LFD) [13] features extract shape and gradient information from the image 31

to enhance the discriminativity of colonic polyps. In this present work, PCA and 32

Wavelet are also used, and we will discuss these in the following section. 33

In contrast to ML-based methods that heavily rely on handcrafted feature 34

extraction, Deep Learning (DL) has the advantage of not requiring previous 35

preprocessing of image datasets, as they can be trained to automatically extract and 36

learn the relevant features. As a result, a recent review compiled more than three 37

hundred DL-based studies used in the field of medical image analysis [14], and related 38

analysis revealed that the diagnostic performance of DL models is equivalent to that of 39

healthcare professionals [15]. A significant amount of research on automatic polyp 40

classification has been carried out since 2014. Remarkably, some participants in the 41

Automatic Polyp Detection at the International Conference on Medical Image 42

Computing and Computer Assisted Intervention (MICCAI) in 2015 [16] already used 43

DL approaches. Since then, a growth of DL-based research accomplishing these tasks 44

has been introduced every year with promising results [17]. 45

Convolutional Neural Network (CNN) is a powerful technique in Deep Learning for 46

medical image diagnosis. In contrast to traditional handcrafted feature extraction, CNN 47

can effectively extract abstract and higher-level features [18]. Bernal et al. [16] 48

compared the efficacy of handcrafted features with CNN-extracted features in detecting 49

polyp presence on still frames. They claimed that end-to-end learning approaches based 50

on CNN are more efficient than those based on handcrafted features. Akbari et al. [19] 51

applied CNN on whole-slide images to classify informative and non-informative 52
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colonoscopy frames. Others have also utilized deep learning architectures, such as 53

Visual Geometry Group (VGG) [20], for the identification of the existence of polyps. A 54

comparative assessment of 11 CNN models has been performed for colorectal cancer 55

two-stage classification. The CNN models include VGG16, VGG19 [20], Inception 56

V3 [24], Xception, GoogLeNet [25], ResNet50, ResNet100 [26], DenseNet [27], 57

NASNetMobile, MobilenetV2, for informative polyp frame detection [21]. Sharma et 58

al. [22] proposed a multiple CNNs (ResNet, GoogleNet, Xception) classifier consultation 59

strategy to create an effective and powerful classifier for polyp identification, achieving 60

a performance measure greater than 95% in each of the algorithm parameters. Younas 61

et al. [28] proposed an ensemble CNN-based approach for colorectal polyp classification, 62

achieving a 96.3% F1 score on a public dataset. 63

Despite achieving good scores for polyp classification using CNN algorithms, one of 64

the most significant limitations always present in the application of CNNs, especially in 65

medical image analysis of colonoscopic videos and images, is the requirement for large, 66

labeled datasets specific to the medical domain. Creating high-quality datasets in this 67

domain is a challenge due to the high costs in terms of both economy, time, and medical 68

expertise. In order to learn effective features for polyp classification, the depth and 69

number of parameters in CNNs must be sufficiently large. However, due to the limited 70

training samples for polyps, overly complex networks can easily lead to overfitting. 71

Additionally, a complex network necessitates a lengthy training time. Other challenges 72

in using CNNs for classification with limited sample data include working with smaller 73

medical image datasets (at the level of thousands). 74

Recently, several methods have been proposed to tackle the issue of limited training 75

samples in deep learning-based image classification. Given that wavelets can extract 76

effective features from images even with small sample sizes, some approaches combining 77

wavelet and CNN for image classification tasks have been introduced. 78

Razali et al. [30] integrated wavelet with CNN for breast tissue classification to 79

address the problem of CNN overfitting. Simon et al. [31] introduced an architecture 80

called WaveTexNeT, which combines wavelet and the Xception convolutional network. 81

This model concatenates spatial and spectral features as inputs for the network. 82

However, WaveTexNeT utilizes spectral features only as a data augmentation technique, 83

instead of using original pixels as network inputs. Deo et al. [32] developed an ensemble 84

model incorporating wavelet and CNNs. They extract features from images using 2D 85

empirical wavelet transform, with CNNs employed for image classification. Nevertheless, 86

the ensemble model still contains a considerable number of learnable parameters. Kutlu 87

et al. [33] devised a novel method based on CNN, DWT, and SVM for polyp detection 88

and classification. In this approach, DWT is utilized to reduce the dimensionality of 89

feature vectors obtained from CNNs. However, the wavelet method only learns the 90

spectral coefficients of CNN features, including approximations and details, which limits 91

the full exploitation of backpropagation to optimize the entire CNN network. 92

In this article, we introduce a novel network named Enhanced Scattering Wavelet 93

Convolutional Neural Network (ESWCNN) to effectively integrate wavelet transform 94

with the standard convolutional network. Unlike existing methods that primarily utilize 95

Discrete Wavelet Transform (DWT) for preprocessing [32] or postprocessing [33], and 96

those neglecting to train the standard convolutional network’s learnable parameters, our 97

proposed approach processes each input channel through a fixed wavelet layer alongside 98

the original image layers. This is followed by the application of learnable 1 × 1 filters to 99

generate the output channels. Building upon ESWCNN, we have devised an 100

architecture for polyp classification that not only captures deep spatial features but also 101

extracts spectral information. This architecture is an end-to-end model, eliminating the 102

need for an additional classifier. 103

The key contributions of this article are outlined as follows: 104
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1) In order to extract more discriminative features and develop an end-to-end system 105

efficiently with a limited number of polyp samples, we propose a new method called 106

Ensemble ML and DL. This method enables the network to extract deep features 107

effectively with fewer trainable parameters that can be learned from a small training 108

dataset. The scattering wavelet is capable of extracting common spectral features with 109

various scales and orientations, while the CNN learnable filters can capture spatial 110

features that DWT may overlook. 111

2) We suggest incorporating local discriminant structure into the cross loss function 112

by combining the scattering wavelet and CNN losses. This approach aims to enhance 113

the learning of more discriminative features and establish an end-to-end system 114

simultaneously. 115

3) Our proposed method outperforms other state-of-the-art polyp classification 116

techniques significantly, especially when dealing with limited training samples. 117

Furthermore, due to its simple structure, our method exhibits faster training and 118

testing speeds compared to the current state-of-the-art methods. 119

Related works 120

Numerous researchers have conducted studies on the diagnosis of polyps from various 121

perspectives. However, there is ample room for enhancing diagnostic performance. 122

Previous research on polyp diagnosis can be broadly categorized into three main areas: 123

detection, segmentation, and classification. In comparison to other domains, the 124

classification of polyps has received less scrutiny. Polyp classification studies have 125

utilized various technologies, including computer vision, machine learning, and deep 126

learning. 127

Based on the results of previous research and the findings of the MICCAI Endoscopic 128

Vision Challenge [16], it is evident that state-of-the-art object detection models can 129

already achieve very high precision in polyp detection. In this paper, we assume that 130

the polyps have been detected and narrow our focus to the study of classification. 131

Several models have been proposed for the automated classification of colon polyps. 132

Mesejo et al. [43] suggested a model that combines machine learning and computer 133

vision algorithms to perform a virtual biopsy of hyperplastic lesions, serrated adenomas, 134

and adenomas. They also introduced a dataset of colonoscopic videos with ground truth 135

collected from experts, referred to as the colonoscopy dataset, which includes 76 videos 136

presented in both White Light (WL) and Narrow-Band Imaging (NBI) formats. The 137

NBI video format was utilized in the study, with the dataset containing 15 serrated, 21 138

hyperplastic, and 40 adenoma polyps. These videos comprise 20,948 adenoma, 7,423 139

hyperplastic, and 5,902 serrated polyp images, evaluated by four experts and three 140

beginner operators. The study combines the advantages of both computer vision and 141

machine learning to achieve accurate classification. However, the average accuracy 142

(ACC) achieved is 82.46%, with a sensitivity (SEN) of 72.74% and a specificity(SPE) of 143

85.88%. The experiment compares the 15 best-ranked models, with the top-performing 144

model utilizing Random Subspaces (RS) or Support Vector Machine (SVM) considering 145

WL, 3D shape, color, and textural features. 146

Wavelets have wide applications in signal processing, pattern recognition, and other 147

fields due to their superior performance in time-frequency analysis. Some Wavelets 148

include the following: 149

1) Db97 [34]: The Db series wavelet is a family of wavelets proposed by Donoho and 150

Johnstone, also known as ”Daubechies wavelets”. Db 97 refers to a wavelet of order 9, 151

with a filter length of 97 coefficients. Db wavelets exhibit good orthogonality and 152

symmetry, making them popular choices in applications such as signal denoising and 153

image compression. 154
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2) Bior39 [35]: The Bior series wavelets combine the features of orthogonal and 155

biorthogonal wavelets. Bior39 is constructed using three db wavelets (db 2, db 4, db 6) 156

and three symmetric wavelets (sym 2, sym 4, sym 6). Bio wavelets are frequently 157

employed in biomedical signal processing and image compression applications. 158

3) Sym5 [36]: The Sym series wavelet is a type of biorthogonal wavelet family. Sym 159

5 is created using five db wavelets (db 2, db 4, db 6, db 8, db 10). The Sym wavelet 160

exhibits good approximate symmetry and is well-suited for signal processing and image 161

compression tasks. 162

4) Db4 [34]: Db 4 belongs to the Db series of wavelets with a filter length of 4. The 163

Db4 wavelet is a popular choice among discrete wavelets, extensively employed in tasks 164

such as signal denoising and image compression, thanks to its short filter length and 165

excellent time-frequency localization properties. 166

HHT [37]: Hilbert-Huang transform(HHT), consisting of empirical mode 167

decomposition and Hilbert spectral analysis, is a newly developed adaptive data 168

analysis method, which has been used extensively in signal processing. The HHT 169

transform is usually used for image processing, especially in image compression, which is 170

able to provide a better compression effect and a faster computing speed. 171

For image classification tasks, CNNs are susceptible to noise interference. To address 172

this issue, several methods have been developed that integrate CNNs with wavelets. 173

One such method is the Multi-level Wavelet CNN (MWCNN) [53], which incorporates 174

wavelet transform into the CNN architecture to reduce the resolution of feature maps. 175

Another approach is WaveCNet [54], which integrates CNNs with wavelets by replacing 176

the conventional pooling layer with discrete wavelet transform. This allows the wavelet 177

to decompose the feature maps into low-frequency and high-frequency components. By 178

integrating wavelets with commonly used CNNs such as ResNet [26], DenseNet [27], and 179

VGG [25], higher accuracy in image classification tasks has been achieved. One 180

drawback of the aforementioned methods is that they directly replace the pooling layer 181

with wavelets, leading to the loss of spatial feature information. 182

In WaveTexNeT [31], pooling and the convolution operation are considered as 183

downsampling. The frequency domain provides an advantage for feature extraction. By 184

enhancing specific frequencies and suppressing others, a spatial filter can be easily made 185

selective. In CNNs, controlling this selection is challenging. WaveTexNeT incorporates 186

spectral techniques into CNNs to extract spectral and spatial features, but the deep 187

learning network only utilizes Xception. 188

The CNN-Wavelet scattering textural feature fusion method [30] is similar. It aims 189

to address CNN overfitting on small datasets by incorporating scattered wavelet 190

coefficients to preserve high-frequency signal information. The classifier in this 191

approach employs a non-parametric KNN algorithm. Therefore, CNN-Wavelet fusion is 192

not an end-to-end solution. 193

In the Colonoscopy Dataset [43], Kutlu et al. [33] introduced a novel approach for 194

polyp detection and classification using CNN, DWT, and SVM. The method involves 195

ensemble CNNs for feature extraction, DWT for feature reduction, and SVM for polyp 196

classification. The experiments were conducted using 5-fold cross-validation. The study 197

not only classified the three basic classes of polyps - Serrated adenomas, adenomatous 198

polyps, and hyperplastic polyps but also introduced a lumen class to reduce incorrect 199

estimates in polyp detection. 200

Materials and methods 201

To implement the proposed method ESWCNN in this study, the experiment is 202

conducted in three stages, Fig 2 illustrates the schematic diagram of the feature 203

extraction method using ESWCNN. Firstly, the entire input images of the polyps 204
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undergo pre-processing. Texture images can be processed for both spatial and spectral 205

features. The motivation behind the ESWCNN method stems from the limitation of 206

CNNs in capturing spectral information essential for processing texture images. Spatial 207

features provide detailed information extracted from textures by manipulating pixel 208

intensity values in the neighborhood. DWT [7] has shown promise in capturing spectral 209

features, encompassing approximation features like low and high frequencies. The low 210

frequency component depicts the smooth areas, while the high frequency component 211

captures spectral features like edges and boundaries [31]. Therefore, spatial-spectral 212

features from texture images are combined and fed into the network for training. 213

Secondly, PCA [9] is utilized to reduce the dimensionality of the spatial-spectral 214

feature vector space. The subsequent section will elaborate on how PCA can enhance 215

the performance of texture classification. 216

Finally, CNN is employed as a parallel classification algorithm on the input feature 217

patches extracted from the previous stage. The accuracy of the proposed classifier 218

models is evaluated using confusion matrices, precision, recall, and classification 219

accuracy. 220

2D/3D Feature Extraction 221

For the 2D texture feature extraction, only a single region of interest from a frame 222

where the lesion is visible is required. This region of interest does not need to be highly 223

precise and can be manually defined as a simple polygonal region. Invariant Local 224

Binary Patterns (ILBP) [55] and Invariant Gabor Texture Descriptors (AHT) [56] are 225

chosen as texture descriptors for this purpose. These descriptors are selected for their 226

robustness against monotonic gray-scale changes, such as those caused by variations in 227

illumination, and for their rotational invariance. Gray-level co-occurrence matrix 228

(GLCM) or Histograms of Oriented Gradients (HOG) descriptors are not utilized 229

because these features, in their standard form, are not invariant to rotation or scale 230

changes in the texture. In endoscopy, the light source is typically positioned very close 231

to the camera’s center of projection. Therefore, a pixel classified as a specularity 232

indicates that the normal at that point of the surface aligns with the optical beam. 233

Consequently, lesions with irregular shapes exhibit distinct specular patterns. 234

We rely on Agisoft Metashap software Structure-from-Motion(SfM) [48] to compute 235

a dense 3D model of the polyp and the surrounding tissue (see Fig 3) from the 236

exploratory video. 237

To achieve accurate and stable reconstructions, current Structure-from-Motion (SfM) 238

methods typically require the following conditions: 239

1) Rigid Geometry: While natural deformations may occur in colon tissues (e.g., due 240

to peristalsis or external compression), it is assumed that during the exploratory video, 241

deformations near the target polyp are minimal, and the rigidity assumption holds true. 242

2) Textured Surfaces: Colon tissue, in general, lacks strong texture, which can 243

impact the quality of 3D reconstruction. However, with Narrow Band Imaging (NBI) 244

lighting, near-surface vessel patterns are highlighted, improving the textural content for 245

reconstruction. 246

In the context of the SfM process described, the researchers utilize PhotoScan 247

software [48], which automatically generates a dense, textured 3D mesh of the polyp 248

from a set of images. This dense SfM reconstruction provides a detailed description of 249

the polyp’s 3D surface using a triangular mesh(see Fig 3). This enables the computation 250

of the geometric quantities such as normals or curvatures. The features extracted from 251

the reconstructed 3D surface, along with their corresponding dimensionalities, are 252

summarized in Table 1. This table likely provides a comprehensive overview of the key 253

characteristics and properties extracted from the reconstructed polyp surface. 254
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Table 1. Summary all feature descriptors and their corresponding size of
feature vector space [43]

Feature Descriptor Number of features

2D Texture AHT(Invariant Gabor Texture) 166
Rotational Invariant LBP 256

2D Color Color Naming 16
Discriminative Color 13
Hue 7
Opponent 7
color GLCM 33

3D Shape Shape-DNA 100
Kernel-PCA 100

Another function of the SfM software is to extract single-frame images from the 255

video, a process that is elaborated on in the experimental section. 256

Invariant Scattering Wavelets 257

A wavelet transform commutes with translations, and therefore is not translation 258

invariant. The Discrete Wavelet Transform (DWT) [7] decomposes data into various 259

components, separating the main information and details. The original data can be 260

reconstructed using Inverse DWT (IDWT) with the DWT output. In signal processing, 261

DWT is a valuable tool for anti-aliasing. In this paper, we primarily focus on its 262

application in enhancing the spectral effect in Convolutional Neural Networks (CNNs) 263

for polys image classification. 264

In the early studies of wavelet integrated neural networks, researchers implemented 265

wavelet transforms using parameterized one-layer networks and searched for the optimal 266

wavelet in the parameter domain. Recent work [32] has extended this method to deeper 267

networks for image classification. However, training a deep network with wavelet 268

parameterization is challenging due to the significantly increased computational 269

complexity [32]. 270

Mallat et al. explored the optimal deep network from a mathematical and 271

algorithmic perspective, they introduced Scattering Wavelets (ScatNet) [44] by 272

cascading wavelet transform with average-pooling and nonlinear modulus operation. 273

Invariant Scattering Wavelets preserve image detail information and extract a 274

translation invariant feature robust to deformations. Compared with CNNs of the same 275

period, ScatNet achieves better performance on texture discrimination and recognition 276

tasks. 277

Additional translation invariant coefficients U can be computed by further iterating 278

on the Scattering wavelet transform, where modulus operators are defined as follows: 279

U[p]x = U[λm] . . .U[λ2]U[λ1]x

= |||x ⋆ ψλ1
| ⋆ ψλ2

| . . . | ⋆ ψλm
|

(1)

where index λ is the frequency location of ψλ, and defines a path as squence 280

p = (λ1, λ2, ,̇λm) . To obtain scattering coefficients S, It defines a windowed scattering 281

transform use a low pass filter ϕJ2 (u) = 2−2Jϕ(2−Ju) 282

S[p]x(u) = U [p]x ⋆ ϕJ2 (u)

=

∫
U [p]x(v)ϕJ2 (u− v)dv

= |||x ⋆ ψλ1
| ⋆ ψλ2

| . . . | ⋆ ψλm
| ⋆ ϕJ2 (u)

(2)
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However, ScatNet is essentially a hand-designed feature extractor without learnable 283

parameters. Due to the strict mathematical terms, ScatNet can not be easily 284

transferred to image-to-image tasks, such as image segmentation. 285

To overcome this, the Wavelet feature is computed by applying a series of wavelet 286

transforms to the image, and then averaging the results over a range of scales and 287

orientations through the iterative and interconnecting process of averaging and wavelet 288

filtering. Fig 4 shows the process of Scattering Wavelets from n number of levels to get 289

the final feature through the combinations of S coefficients. 290

ESWCNN is a encoder-decoder model implementing wavelet package transform 291

(WPT) for image classification and process the concatenation of various components of 292

the input data in a unified way. 293

In ESWCNN, the input images are represented as four multiresolution levels of 294

decomposition to extract better texture features. scattering wavelet extract features in 295

multiresolution analysis in frequency domain. ESWCNN uses the 3× 3 convolutional 296

kernels, stride 2 with padding 1× 1 for capturing the spectral features. Stride and 297

padding is applied to the input image to lower the feature dimensions. 298

In ESWCNN, pooling and the convolution operation are considered as down 299

sampling and filtering thereby establishing a relation between convolutional neural 300

networks and multiresolution decomposition. The Invariant scattering frequency domain 301

offers an advantage for feature extraction. By increasing certain frequencies while 302

suppressing others, a spatial filter may be readily made selective. In CNNs, this explicit 303

selection of specific frequencies is difficult to regulate. ESWCNN incorporate spectral 304

techniques into CNNs through multiresolution analysis. 305

Adaptive Principle Component Analysis 306

Principal Component Analysis (PCA) [10] is a mathematical technique for data 307

transformation that reduces multidimensional data into a lower number of principal 308

components, which are uncorrelated and retain variance as much as possible. PCA is 309

often used for feature selection to address the issue of dealing with numerous features. 310

This analysis reduces the feature dimension while minimizing information loss. 311

In the field of medical imaging, PCA has been employed for various purposes. For 312

instance, Ansari et al. [39] used PCA to transform endoscopic narrow-band images 313

(NBI) into standard colored endoscopic images, allowing for the extraction of a target 314

image from a different source image. 315

In the context of extracting 3D shape features, PCA plays a crucial role in capturing 316

fundamental information in NBI, which enhances structures and textures. This enables 317

the improvement of standard images for better assessment and diagnosis. Additionally, 318

PCA is used for reducing highly dimensional data, such as fluorescence spectral images 319

of colorectal polyps. By reducing a high-dimensional set of images to eight principal 320

components, tissue classification becomes more intuitive and manageable. 321

Discriminant FFT-filter 322

The Fast Fourier Transform (FFT) [41] is an efficient algorithm for calculating the 323

discrete Fourier transform (DFT). It can convert a signal from the time domain to the 324

frequency domain and vice versa. While FFT is distinct from the wavelet transform, it 325

holds significant importance in signal processing and is frequently used in conjunction 326

with the wavelet transform to enhance the efficiency and effectiveness of signal 327

processing. 328

CNN operators primarily focus on feature aggregation rather than adjusting specific 329

frequency components. To address this limitation, we propose the integration of a 330

discriminant operator that can effectively filter out various components. This 331
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integration involves incorporating a Discriminant Fast Fourier Transform filter 332

(Discriminant FFT-filter) into the CNN network to extract useful maps while 333

suppressing noise components in the frequency domain. 334

Specifically, given the encoder feature F ∈ RH×W×C , we initially apply a 2D FFT 335

F operation along the spatial dimensions, resulting in a transformed feature Fc = F [F ] 336

where Fc ∈ CH×W×C . Subsequently, to learn a discriminant spectrum filter, we 337

introduce a learnable weight map W ∈ CH×W×C and perform element-wise 338

multiplication of W with Fc. This spectrum filter enhances the training process by 339

enabling global adjustments to specific frequencies, with the learned weights tailored to 340

discriminate between different frequency components of the target distributions. 341

The output feature Fout is defined as: 342

Fout = F + F−1[W ◦ Fc] (3)

where ◦ represents the hadamard product. 343

Long Short Term Memory 344

In the second stage, Long Short Term Memory(LSTM), a variant of the RNN 345

model [42], was used to exploit the temporal information from the set of t features 346

vectors that were extracted in the first stage by using ResNet18. LSTM with optimized 347

network parametrers was used to classify colorectal polyp [46]. 348

In this work, we apply LSTM to analysis the features of signal, the signal regard as a 349

time squence. The basic structure of a standard LSTM cell is shown in Fig 5, which 350

illustrates the flow of data at time t. In general, four components, named as input gate 351

(it), forget gate (ft), cell candidate(gt), and output gate (ot), are responsible for 352

controlling the state information at time step t. 353

ct = ft × ct−1 + gt × it

ht = ot × tanh(ct)

it = σ(Witxt +Ritht−1 + bit)

ft = σ(Wftxt +Rftht−1 + bft)

gt = tanh(Wgtxt +Rgtht−1 + bgt)

(4)

where tanh is the hyperbolic tangent function, and σ is the sigmoid function, which is 354

used to compute the activation function of the gate. The (it) controls the level of the 355

cell state update, whereas the gate (ft) controls the level of the cell state reset. The (gt) 356

adds the information to the cell state and finally, the (ot) controls the level of the cell 357

state added to the hidden state. Based on these components, the complete structure of 358

the cell is divided into three gates, named as forget, input, and output gates, as 359

highlighted in Fig 5. 360

Scattering Convolutional Neural Network 361

Our proposed classification framework consists of a cascaded CNN and wavelet-based 362

deep networks capable of classifying the video data based on spatiotemporal features. 363

The primary advantage of our network is its capability to categorize a variable length 364

sequence of n successive images (i.e.,x1, x2, x3, xj ,̇j ∈ Z) with significant performance 365

gain. the l -th layer features xlj are obtained by l− 1 -th layer features xl−1
j . 366

xlj = f(
∑
i∈Z

Wi,j(x
l−1
i ⊗K) + blj) (5)
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where K is convolutional kernel, ⊗ denotes convolution operation, activation function f 367

computed hyperparameter Wi,j with bias b. For example, the use of more successive 368

images results in better classification performance. 369

Furthermore, our cascaded deep learning model has exhibited superior performance 370

compared to models solely based on CNNs. This can be attributed to the fact that 371

CNN models typically focus on extracting spatial information by analyzing each input 372

image separately, without taking into account both spatial and temporal features when 373

dealing with video datasets. Due to the absence of temporal information consideration 374

in CNN models, there is a degradation in the overall classification performance. 375

To overcome the limitation of previous spatial features-based methods in the medical 376

domain, our study included a spatial variant of scattering waveletS[x] along with the 377

conventional CNN model to enhance the classification performance. 378

xlj = f(
∑
i∈Z

Wi,j((x
l−1
i ⊕ S[xl−1

i ])⊗K) + blj) (6)

where ⊕ denotes that all groups are concatenated along the depth dimension. To 379

remove the negative influence of autoencoder, we skip the autoencoder and updated 380

parameter Wi,j by the gradient: 381

∆Wi,j = −η ∂L
∂Wi,j

(7)

where η is learning rate, and loss function L can be formulated as 382

L =∥ y − ŷ(x) ∥2 +γ ∥ y − ŷ(S[x])] ∥2 (8)

where y is ground truth class label, and ŷ(x) is predicted label, ŷ(S[x]) is a predicted 383

label generated by scattering wavelet. Additionally, γ is a predefined weight used to 384

balance the losses from wavelet scattering and CNN. Through experiments, we will 385

demonstrate that selecting a suitable value for γ to achieve optimal performance is a 386

straightforward task. Specifically, Whenγ = 0 orγ → 1 the performance tends to 387

deteriorate. Further details regarding this observation will be discussed in the 388

subsequent experimental section. 389

Experiment 390

Data set preparation 391

In this study, we have gathered all publicly available endoscopic datasets within the 392

research community, in addition to curating a new dataset sourced from the University 393

of Kansas [45]. All datasets have been deidentified to ensure patient confidentiality. 394

Collaborating with endoscopists, the polyp classes were meticulously annotated across 395

all collected video sequences, along with delineating the bounding boxes of polyps in 396

each frame. The following provides an overview of each dataset. 397

The PolypGen dataset is a comprehensive collection designed for polyp segmentation 398

and detection generalization [47]. Some representative negative and positive sample 399

images are illustrated in Fig 6. This dataset comprises a total of 8037 frames, 400

encompassing both individual frames and sequences. It includes 3762 positive sample 401

frames and 4275 negative sample frames sourced from six distinct hospitals, each with 402

diverse population demographics, endoscopic systems, surveillance expertise, and polyp 403

resection techniques. 404

A portion of this dataset was initially employed in the 3rd International Workshop 405

and Challenge on Endoscopic Computer Vision. This challenge aims to foster 406
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collaboration, curate multicenter datasets, facilitate the development of generalizable 407

models, and evaluate deep learning techniques. The dataset provided represents an 408

expanded iteration of the EndoCV2021 challenge. 409

The GLRC UCI dataset [43] is a publicly available dataset that focuses on 410

Gastrointestinal Lesions in Regular Colonoscopy. This dataset comprises 76 short video 411

sequences with class labels. Some sample images are illustrated in Fig 7 . The training 412

and test data for the UCI model were derived from this dataset and classified by experts. 413

The dataset includes video sequences captured in both White Light (WL) and 414

Narrow-Band Imaging (NBI) formats. It consists of 3 classes: 15 serrated, 21 415

hyperplastic, and 39 adenoma polyp videos. These videos contain a total of 20,948 416

adenoma frame images, 7,423 hyperplastic frame images, and 5,902 serrated polyp 417

frame images, each captured from various angles. 418

For the image classification task, a subset of 1,200 images was selected, with 400 419

images from each class captured from different perspectives. 420

The GDZY dataset was gathered from the Second Affiliated Hospital of Guangzhou 421

University of Traditional Chinese Medicine(TCM). It comprises 1,347 patient 422

colonoscopy sequences. Due to the correlation between intestinal polyps and human 423

magnetic signals [57], data were collected using a human weak magnetic signal 424

instrument without gastroenteroscopic intervention. 425

Employing a paired design, the same subjects underwent colonoscopy both before 426

and after colorectal polyp resection, with the paired images displayed in Fig 8. 427

Following the paired results, Gastroenteroscopy experts manually labeled the polyp 428

classes (negative or positive) for the entire dataset. 429

In signal processing, wavelet transform is a method for analyzing the time-frequency 430

characteristics of signals. After removing columns with zero values and columns of the 431

same level, 715 electromagnetic wave variables were obtained. Fourier wavelet 432

transformation was performed, including db 97 wavelet [34], HHT [37], Bior39 [35], Sym 433

5 [36], db 4 [34], FFT [41], resulting in a total of 4,625 feature columns. 434

The following methods were used for feature selection: 435

1) Select the top 30 features based on feature importance from random forest. 2) 436

Choose the top 99% features based on absolute correlation with the target variable. 3) 437

Select the top 99% features based on the variance after softmax with the target variable. 438

Combine the features selected by these methods through voting to obtain the common 439

variables as the result of feature selection, which will be used as the overall features for 440

the next algorithm construction. 441

The top 1 % significant features were identified by conducting a two-sample T-test 442

on different features. In two groups of data divided by whether or not the individuals 443

have colorectal polyps, if a feature significantly influences the presence of colorectal 444

polyps, then this feature should exhibit a significant difference between the two groups 445

(with and without colorectal polyps). Therefore, a two-sample T-test was used to assess 446

whether the mean of the feature is significantly different, filtering out variables with 447

high significance for further analysis. 448

Selected top 1% features shown in Fig 9 . 449

Implementation Details 450

The proposed framework was implemented with MATLAB R2021a (MathWorks, Inc., 451

Natick, MA, USA) on a Windows 11 operating system. The deep learning library 452

named as deep learning toolbox was included in MATLAB for the implementation of 453

various CNN models. All the experiments were performed on a desktop computer with 454

a 3.50 GHz Intel (Santa Clara, CA, USA) Core-i7-10700K central processing unit (CPU) 455

, 32 GB random access memory (RAM), and an NVIDIA (Santa Clara, CA, USA) 456
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GeForce RTX 2060 graphics card . The graphics card was utilized to leverage parallel 457

processing capabilities for both the training and testing phases. 458

In this paper, we investigate six CNN architectures: GoogLeNet, ResNet-50, 459

Inception-v3, ResNet-101, DenseNet-201 and Our ESWCNN. Details about these 460

architectures are provided in Table 2. Each model has been independently trained with 461

the training data of the variant dataset.

Table 2. Summary the information about compared network architectures

Network Depth Number of Parameters(M) Image Input size

GoogleNet [25] 144 1.24 224× 224
SqueezeNet [23] 68 1.23 227× 227
InceptionV3 [24] 315 23.9 299× 299
ResNet-50 [26] 50 25.6 224× 224
ResNet-101 [26] 101 2.61 224× 224
DenseNet-201 [27] 201 1.24 224× 224
Our Model 7 0.06 28× 28

462

The optimal hyperparameter values used in this study are presented in Table 3. 463

Through experimentation, we determined that a batch size of 10 and a learning rate of 464

0.0003 complemented each other well in achieving our primary training objective of 465

minimizing the generalization gap between training loss and validation loss. 466

Furthermore, a dropout rate of 0.2 was employed to prevent overfitting during model 467

training. Subsequently, we saved the weights of the model with the lower validation loss. 468

These saved weights were then utilized for ensembling and classifying the test images. It 469

is noteworthy that we retained the default parameters for convolutional filters, padding, 470

pooling filters, and strides from the original ResNet-50 and DenseNet-201 networks.

Table 3. Hyperparameters in the Resnet50,Resnet101 and Densenet201
architectures

Hyperparameters Values

Optimizer Sgdm
Learning Rate 0.0003
Loss Function Binary Cross-entropy
MiniBatchSize 10
MaxEpochs 6
Dropout 0.2
Shuffle Every-epoch
Input size 224× 224× 3

471

Structure from Motion (SfM) offers the capability to extract 3D surfaces, perform 472

triangulation, and extract 3D features. Additionally, it enables the extraction of 473

individual frames from videos. However, SfM typically requires videos in AVI format, 474

while UCI dataset only provides videos in MP4 format. To address this discrepancy, a 475

commercial software tool like Universal Format Factory (reference [49]) can be utilized 476

for video conversion to ensure compatibility with SfM’s requirements. 477

On the GDZY datasets, experiments are conducted under uniform spatial and 478

environmental conditions to compare the electromagnetic signals of the acquisition 479

device’s signal line in normal operating and non-operating (power off) states. During 480

the experiments, operators analyze the 1-10Hz frequency-domain and time-domain 481

signals to detect any shooting signals being transmitted by the equipment and to 482

identify weak magnetic signals from various patients. 483

Each test is performed three times in both normal working and non-working states 484
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(power off) within each test room, with measurements taken every minute. This results 485

in a total of 24 tests conducted on a single individual, with each test lasting for 1 486

minute. 487

Performance metrics 488

In the context of classification models, the recall rate is used as the evaluation metric. 489

When dealing with colorectal polyp classification, which is a class imbalance problem, 490

the performance of both individual and ensemble models is assessed using the F1-score 491

metric. The F1-score provides equal importance to both precision and recall, making it 492

an ideal metric for unbiased evaluation of performance in imbalanced datasets. 493

Given the dataset’s varying degrees of class imbalance, evaluating imbalanced data 494

results necessitates the use of advanced metrics. Additionally, since the work involves 495

three-class classification, the evaluation metrics include accuracy, precision, recall, 496

specificity, precision, and F1-score. 497

In this study, the classification performance is evaluated based on sensitivity(sen), 498

specificity(spe), and accuracy(acc). The terms True Positives (TP), False Positives 499

(FP), True Negatives (TN), and False Negatives (FN) are defined as follows: 500

� True Positive (TP): A correctly classified image is considered a TP. 501

� False Positive (FP): An image that is not correctly classified is considered FP. 502

� True Negative (TN): The classifier estimates that the image class is not X, but 503

actually represents the number of evaluations TN, which is not the image class X. 504

� False Negative (FN): The classifier estimated the image class not X, in fact the 505

image class represents the number of evaluations in the form of X. 506

The following metrics are calculated from TP, FP, TN, FN: 507

Accuracy(Acc.) =
TP + TN

TP+ TN+ FP + FN
(9)

Specificity: the proportion of true negatives that were predicted as such. The specificity 508

is given by: 509

Specificity(Spec.) =
TN

TN+ FP
(10)

Sensitivity (or recall): the proportion of true positives that were predicted as such. The 510

sensitivity is given by: 511

Sensitivity(Sen.) = recall =
TP

TP + FN
(11)

Precision (or PPV): the proportion of predicted positives that are real positives. The 512

positive predictive value is given by: 513

precision =
TP

TP + FP
(12)

F1-score: a measure combining recall and precision. The F1-score is given by: 514

F1− Score = 2× recall× precison

recall + precison
(13)

Experiment Results and analysis 515

In the paper, the experimental settings and variations are presented in three tables: 516

Table 4, Table 5, and Table 6. The evaluation metrics used to measure the performance 517

of the models include accuracy, sensitivity, specificity, and F1-score. 518
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These metrics are essential for assessing the classification models’ performance in the 519

context of colorectal polyp classification, especially in dealing with class imbalance and 520

multi-class classification scenarios. The tables provide a detailed overview of the 521

experimental setups and variations tested in the study, along with the corresponding 522

results based on the evaluation metrics mentioned. 523

Ablation experiment 524

The experiments described in the paper were conducted using benchmark data and 525

involved six contemporary CNN architectures. The main objective of these experiments 526

was to identify the most suitable hyperparameter settings among the neural networks 527

for classification tasks. 528

Initially, the dataset was divided into a training set and a test set. The training set 529

was then fed into pre-trained networks to determine the optimal optimizer for the 530

specific dataset. Three candidate optimizers were considered: ADAM (Adaptive 531

Moment Estimation), SGDM (Stochastic Gradient Descent), and RMSprop (Root Mean 532

Square Propagation). Through experimental comparison, it was found that SGDM 533

performed the best among the three optimizers for the given dataset. 534

The process of evaluating different optimizers is crucial in determining the most 535

effective optimization algorithm for training neural networks. The choice of optimizer 536

can significantly impact the training process and ultimately influence the classification 537

performance of the models. By comparing and selecting the best optimizer for a specific 538

dataset and neural network architecture, researchers and practitioners can enhance the 539

efficiency and effectiveness of the training process, leading to improved classification 540

accuracy and overall model performance. 541

In the experiment, we conducted ablation experiments on the PolyGen dataset using 542

a Convolutional Neural Network (CNN). The results of the experiments demonstrated 543

that integrating Discrete Wavelet Transform (DWT) with CNN led to improvements 544

over the original CNN model. Specifically, the CNN + DWT model exhibited 545

enhancements in sensitivity, specificity, and accuracy by 5.6%, 1.3%, and 1.7% 546

respectively, achieving values of 96.7%, 92.83%, and 94.8% for these metrics. 547

The ablation experiments involving CNN and DWT on the PolyGen dataset are 548

summarized in Table 4. These findings highlight the effectiveness of combining CNN 549

with DWT for classification tasks, showcasing significant performance gains in 550

sensitivity, specificity, and accuracy compared to using CNN alone. The results 551

underscore the potential advantages of leveraging both CNN and DWT techniques in 552

tandem to enhance classification outcomes. CNN, DWT and LSTM combinations were

Table 4. Ablation experiments on PolyGen

CNN DWT Sen. Spec. Acc.

✓ × 0.9117 0.9151 0.9317
✓ ✓ 0.9670 0.9283 0.94839

553

used in the UCI database. The experimental results demonstrated that the combination 554

of CNN + DWT was better than that of LSTM + DWT and the CNN model, but in 555

some indicators, the model of Hyperplastic serrated accuracy, adenoma sensitivity, 556

serated specificity and CNN was slightly ahead by 1 %. The combination of CNN and 557

DWT performs better overall, with advantages in adenoma accuracy, hyperplastic and 558

serrated sensitivity, and hyperplastic and adenoma specificity. In particular, it 559

outperforms the CNN model by 3.1% in adenoma accuracy and by 4% in serrated 560

sensitivity. LSTM excels in handling sequential information but does not have a 561

comparative advantage in the various metrics compared. 562
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Using CNN, DWT, and LSTM combinations for experiments on the UCI database, 563

the results show that the CNN+DWT combination performs better overall than the 564

LSTM+DWT combination and the standalone CNN model. However, in some 565

individual metrics such as Hyperplastic serrated accuracy, adenoma sensitivity, and 566

serrated specificity, the CNN model slightly outperforms by 1%. The CNN+DWT 567

combination excels in adenoma accuracy, hyperplastic and serrated sensitivity, and 568

hyperplastic and adenoma specificity, with notable leads in adenoma accuracy and 569

serrated sensitivity, surpassing the CNN model by 3.1% and 4% respectively. Although 570

LSTM is better at handling sequential information, it does not demonstrate superiority 571

in the comparison of various metrics. 572

Ablation experiments (DWT,CNN,LSTM)on PolyGen shown in Table 5 On the

Table 5. Ablation experiments on UCI dataset

CNN DWT LSTM Acc Acc Acc Sen Sen Sen Spec Spec Spec
Hyp. Ade. Ser. Hyp. Ade. Ser. Hyp. Ade. Ser.

✓ × × 0.9871 0.9207 0.9790 0.9174 0.9975 0.9475 0.9725 0.9325 0.9575
✓ ✓ × 0.9855 0.9511 0.9619 0.9250 0.9800 0.9875 0.9837 0.9563 0.9525
× ✓ ✓ 0.8250 0.7750 0.9750 0.8684 0.9688 0.7800 0.8750 0.8182 0.8000

573

GDZY database, a combined experiment was conducted using LSTM, DWT, PCA, and 574

FFT. Since the sampled data consisted of weak magnetic sequence signals, LSTM was 575

used instead of CNN. The accuracy of LSTM alone was 55.83%. With the addition of 576

DWT and PCA, the accuracy increased to 56.8% and 61.4% respectively. The final 577

combination achieved an accuracy of 67.4%. Ablation experiments 578

(DWT,PCA,FFT,LSTM)on GDZY shown in Table 6

Table 6. Ablation experiments on GDZY dataset

LSTM DWT PCA FFT Acc

✓ × × × 0.5583
✓ ✓ × × 0.5608
✓ ✓ ✓ × 0.6147
✓ ✓ ✓ ✓ 0.6741

579

In Equation 8, the parameter γ is used to balance CNN and scattering wavelet. An 580

appropriate γ value was determined through experiments. In the grouped experiments, 581

we set γ = 0, 0.25, 0.5, 0.75, 1, the variant γ value from Eq. 8 are used in experiment 582

shown in Fig 10, The experiments compared the average accuracy, hyperplastic 583

accuracy, adenoma accuracy, and serrated accuracy, and the results showed that γ = 0.5 584

achieved the best experimental performance. In subsequent experiments, we used this 585

γ = 0.5 value as the experimental setting. 586

Frame-based three-class polyp classification 587

In the UCI dataset, the methods were classified into three classes: adenoma, 588

hyperplastic, and serrated. Another commonly used technique in the literature to 589

enhance performance is feature selection or reduction algorithms. In this study, 590

ESWCNN was proposed as a feature reduction method. Table 7 presents the 591

classification performance of different feature selection algorithms in the CNN classifier 592

and time measurements for a feature vector. As shown in Table 7, ESWCNN improved 593

the classification performance of CNN architectures from 95.4% to 96.4%. Additionally, 594

the implementation time of the Discrete Wavelet Transform (DWT) architecture was 595
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found to be shorter compared to other methods. Table 8 illustrates the computational 596

complexity of the proposed method. 597

Table 7. Comparison of three-class polyp classification on UCI dataset

Algorithm Average Acc Acc Acc
Acc.(%) Hyp.(%) Ade.(%) Ser.(%)

CAC [43] 82.4 89 76 87
Deep feature selection [51] 94.8 98 95 89
Genetic [50] 94.7 98 96 89
Differential evolution [50] 94.6 97 95 89
PCA [50] 93.6 97 93 89
LDA [50] 94.7 98 96 89
PCC [52] 94.4 98 95 89
F-score [52] 94.6 98 95 89
CNN+DWT+SVM [33] 95.4 98 96 90
ESWCNN 96.4 98.5 96.2 95.1

When compared with other CNN architectures, Fig 11 graphically represents the 598

mean values for all metrics, including accuracy, precision, recall, specificity, and F1 599

score. The comparison involves ESWCNN, which combines ResNet101 and ResNet50 600

architectures, with the DenseNet201 architecture. 601

As shown in Table 8, the proposed model demonstrated a minimum 55% 602

improvement in processing time. Additionally, ESWCNN was observed to enhance the 603

average accuracy rate. Conversely, DWT exhibited faster processing speeds compared to 604

all other CNNs, attributed to its feature size reduction capabilities, consequently 605

boosting the classifier mean accuracy. The comparison of classification accuracy with 606

other CNN algorithms is presented in Table 8.

Table 8. classification accuracy with others CNNs algorithms

Model Average Acc Acc Acc Times.(s)
Acc.(%) Hyp.(%) Ade.(%) Ser.(%)

Squeezenet [23] 33.04± 3.56 100 0.00 0.00 314.04± 13.4
Googlenet [25] 58.75± 3.56 72.50± 4.86 28.75± 3.34 75.01± 2.23 592.19± 54.3
InceptionV3 [24] 90.0± 9.21 87.50± 4.86 95.0± 3.34 87.50± 2.54 5217.5± 67.7
Resnet 50 [26] 69.06± 3.86 82.50± 3.63 18.75± 4.12 76.25± 6.73 1653± 173.1
Resnet 101 [26] 73.12± 7.10 85.00± 3.46 33.75± 2.91 92.50± 8.46 2896± 397.8
Densenet 201 [27] 96.25± 1.42 96.25± 4.27 97.5± 12.5 95.0± 3.68 3748± 335.3
ESWCNN 96.4± 4.36 98.51± 2.25 96.20± 12.5 95.1± 2.57 811± 72.1

607

In terms of overall performance, Densenet stands out by achieving the highest 608

accuracy in adenoma classification at 97.5%, surpassing ESWCNN’s 96.2%. Although 609

other metrics are comparable to ESWCNN, the depth and larger input image size of 610

Densenet result in a significantly longer average time required for 5-fold cross-validation 611

on the UCI dataset, reaching 3748 seconds, which far exceeds ESWCNN’s 811 seconds. 612

On the other hand, models like Resnet 50 exhibit an average time of 1653 seconds with 613

an accuracy of only 69%. Googlenet and Squeezenet, while demonstrating lower average 614

processing times than ESWCNN, have accuracies of only 58% and 33%, respectively. 615

Frame-based two-class polyp classification 616

From Table 9, it is evident that the average accuracy, sensitivity, specificity, and run 617

times for the 5-fold cross-validation experiment on the PolyGen dataset are superior. 618
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This indicates that the models excel in correctly predicting polyp categories. 619

In the classification experiment conducted on PolyGen, a total of 6000 images were 620

resized to 28×28 pixels. The image classification models proposed in this study utilized 621

a 5-fold cross-validation method to split the dataset into training (80%) and test data 622

(20%). The experiment yielded an average accuracy of 94.8% with a standard deviation 623

of 1.33. The sensitivity was measured at 96.7%, while the specificity was at 93.1%. 624

The results presented in Table 9 demonstrate the performance achieved when 625

concatenating 10 scattering wavelet layers with 10 CNN layers. 626

Table 9. n-fold cross validation Experiment result on PolyGen

Model Average Sen.(%) Spe.(%) Times (s)
Acc.(%)

ESWCNN 94.8± 1.33 96.7± 4.1 93.1± 3.6 1117

The experiment results for classification using different CNNs are summarized in 627

Table 10. Densenet 201 stands out with the highest accuracy of 95.83% among all CNN 628

models, which aligns with the results obtained in the two-class classification scenario, 629

result shown in Fig 12. 630

Comparatively, Densenet boasts a deeper network architecture with 201 layers. On 631

the other hand, ESWCNN achieved a classification accuracy of 94.83% with a relatively 632

shallower network structure, showcasing a marginal difference of less than 1% compared 633

to Densenet. Interestingly, ESWCNN also demonstrated a significantly lower 634

computation time of 1117 seconds, in stark contrast to the 16163 seconds required by 635

Densenet. 636

Under the Resnet configuration, the accuracy achieved was 93.5%, with a 637

computation time of 7619 seconds. Notably, ESWCNN exhibited enhanced 638

computational efficiency compared to Resnet.

Table 10. Experiment result with CNNs on PolyGen

Model Data size Accuracy (%) # of Iteration Times (s)

Restnet 50 Oraginal image,not imresize 86.77 1440 8125
Restnet 101 Oraginal image,not imresize 78.39 2880 14,764
Densetnet 201 Oraginal image,not imresize 80.46 2880 17,219
Restnet 50 imresize to 224× 224 93.50 1440 7619
Restnet 101 imresize to 224× 224 84.92 2880 14,179
Densetnet 201 imresize to 224× 224 95.83 2880 16,163
ESWCNN imresize to 28× 28 94.83 1000 1117

639

In the GDZY dataset, a total of 1347 samples were provided. Some samples with 640

incomplete data were removed, resulting in the selection of 1180 samples for analysis. 641

Among these, 944 samples were allocated for training purposes, while the remaining 236 642

samples were reserved for testing. The experimental setup involved utilizing a 5-fold 643

cross-validation technique. The experimental outcomes for ESWCNN on the GDZY 644

dataset are as follows: 645

� Accuracy: 77.5% 646

� Sensitivity: 80% 647

� Specificity: 75.6% 648

ESWCNN was compared against FFT+PCA and XGBoost methodologies. The 649

experiment results shown in Table 11, including the confusion matrices, for the 650

experiments conducted on the GDZY dataset were analyzed. 651

In the grid search process conducted to optimize the XGBoost model’s 652

hyperparameters, the following ranges and options were explored to identify the 653
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Table 11. Confusion matrices for Experiment result on GDZY

ESWCNN XGBoost FFT+PCA
Positive Negative Positive Negative Positive Negative

Positive 81 33 63 34 55 37
Negative 20 102 38 101 46 98
Sum 101 135 101 135 101 135

best-performing configuration in terms of accuracy, recall, and specificity: 654

� Max depth: Ranging from 3 to 11 655

� Learning rate: Options included 0.1, 0.01, and 0.001 656

� Number of estimators: Choices were 10, 30, 70, 150, 250, and 500 657

� Sampling ratios: Ranging from 0.5 to 1 658

� Subsampling ratios: Varied from 0.5 to 1 659

The grid search process aimed to identify the combination of these hyperparameters 660

that led to the highest performance metrics, such as accuracy, recall, and specificity, for 661

the XGBoost model when applied to the GDZY dataset. 662

Discussion 663

In the context of UCI classification, our proposed ESWCNN achieved average accuracies 664

of 96.4%, 98.5%, 96.2%, and 95.1% for overall accuracy, hyperplastic accuracy, adenoma 665

accuracy, and serrated accuracy, respectively. Additionally, for the PolyGen 2-class poly 666

classification, the ESWCNN model attained average accuracies of 94.8%, sensitivity of 667

96.7%, and specificity of 93.1%. 668

Furthermore, a receiver operating characteristic (ROC) analysis was conducted to 669

evaluate the model performance, and Figure 9 illustrates the results using the area 670

under the ROC curve (AUC). It is clear from this analysis demonstrated that our 671

proposed ESWCNN outperforms all other convolutional neural networks (CNNs) for 672

both classification tasks, showcasing its superior performance and effectiveness in 673

handling the given classification problems. 674

In our study, we emphasize the importance of minimizing both false positives (FP) 675

and false negatives (FN) due to their critical impact on the accuracy of the classification 676

system. False negatives occur when patients with cancerous tumors are incorrectly 677

labeled as noncancerous, while false positives occur when patients without cancerous 678

tumors are inaccurately classified as abnormal (cancerous). Both FP and FN can lead 679

to misdiagnosis, posing significant risks to human health. 680

To address this issue, we have incorporated the F1 score along with other 681

performance evaluation metrics to give equal importance to both FP and FN. By 682

considering a balanced evaluation approach, we aim to reduce the occurrence of 683

misclassifications and enhance the overall diagnostic accuracy of our proposed 684

ESWCNN model. 685

Furthermore, we have provided visual representations of the lesions that were 686

correctly classified by both human experts and our ESWCNN model, as well as those 687

that were misclassified by the model but correctly identified by the human experts. 688

Additionally, the images of wrongly classified polys are also presented in Fig 14, offering 689

a comprehensive overview of the classification outcomes for further analysis and 690

discussion. 691

In a few instances of misclassified samples, we observed that the ground truth label 692

”hyperplastic” is susceptible to being incorrectly classified as ”adenoma.” Similarly, 693

there are mutual misclassifications between ”adenoma” and ”serrated” labels. These 694

misclassifications indicate potential challenges in accurately distinguishing between 695
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these different types of lesions, highlighting the complexity and nuances involved in the 696

classification task. Further investigation and refinement of the classification model may 697

be necessary to address these specific misclassification patterns and improve the overall 698

accuracy of the system. 699

The samples in the UCI database are categorized as positive or negative 700

classifications by the ESWCNN model. The best model, as illustrated in Fig 15, 701

accurately classifies the lesions in the dataset. 702

Conclusion 703

There are several significant challenges in medical image processing when utilizing CNN 704

models. The high computational cost arises from pixel-level operations, making it a 705

critical issue. Deep learning algorithms typically involve millions of parameter updates 706

during training, necessitating expensive hardware resources such as high-end graphics 707

processing units. Moreover, obtaining labeled data for medical images is a challenging 708

task, as it requires substantial time from medical professionals and multiple expert 709

opinions to minimize human error. These obstacles hinder the application of 710

high-performance algorithms like deep learning in polyp classification. 711

To address these challenges, we propose ESWCNN model which combines simple 712

CNN architectures with scattering wavelets to extract features from polyp images. 713

ESWCNN leverages CNN for spatial feature extraction and scattering wavelets for 714

frequency feature extraction, updating parameters through backpropagation. We 715

conducted experiments on two public databases and one private database, including the 716

UCI database with three colorectal polyp categories, and the PolyGen and GDZY 717

databases with two categories each. Our experiments involved ablation studies, 718

comparisons with state-of-the-art (SOTA) methods, and evaluations against commonly 719

used CNN architectures. Various parameter configurations were tested, resulting in 720

significant improvements across all experimental metrics. 721

On the UCI database, the accuracy improved from 95.4% to 96.4%. ESWCNN 722

outperformed traditional CNN models in classifying Hyperplastic, Adenoma, and 723

Serrated polyps with accuracies of 98.5%, 96.2%, and 95.1% respectively, while requiring 724

only 25% of the time compared to Densenet. On the PolyGen database, ESWCNN 725

achieved superior performance compared to ResNet and Densenet, with an accuracy of 726

94.83% and a completion time of 1117 seconds. On the GDZY database, the results 727

were as follows: Accuracy: 77.5%, Sensitivity: 80%, Specificity: 75.6%. 728

The experimental outcomes demonstrate the efficiency and performance advantages 729

of our proposed method in colorectal polyp classification, surpassing SOTA methods. 730

This suggests potential value for future clinical applications. 731
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