1	Original Manuscript
2	Title: A Status-Neutral Approach to HIV – Is Targeted Testing Still Relevant
3	South of Sahara?
4	Hamufare Mugauri ¹ , Owen Mugurungi ² , Joconiah Chirenda ¹ , Kudakwashe
5	Takarinda ³ , Prosper Mangwiro ⁴ , Mufuta Tshimanga ¹
6	
7	
8	1. The University of Zimbabwe, Global, Public Health and Family Medicine
9	Department, Harare, Zimbabwe
10	2. Ministry of Health and Childcare, AIDS and TB Unit, Harare, Zimbabwe
11	3. Organisation for Public Health Interventions and Development (OPHID),
12	Harare, Zimbabwe
13	4. Independent Consultant, Zimbabwe
14	
15	*Corresponding Author
16	Hamufare Dumisani Mugauri <u>dumiwaboka@gmail.com</u>
17	Faculty of Medicine and Health Sciences, Global, Public Health and Family Medicine
18	Department, New Health Sciences Building, Parirenyatwa Complex, Mazowe Road,
19	Harare, Zimbabwe
20	Phone: Mobile: +263 772 314 894
21	
22	Author Contribution
23	Conception and design: all authors; development of data capture tools: HDM, KT,
24	OM; data collection: HDM, KT, OM; data entry: HDM, OM; data analysis and
25	interpretation: all authors; preparing the first draft of the manuscript: all authors;
26	critical review and approval of final draft: all authors.
27	
28	Word count: Abstract 289, Main Document: 2 540

29

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

30 Abstract

Introduction: In 2022, UNAIDS replaced the 90% Global HIV targets with six Comprehensive 95% targets that include linkage to comprehensive HIV prevention services, the thrust of the status-neutral approach to HIV testing. Zimbabwe has been implementing both targeted testing and the status-neutral concept. In this paper, we analyse the role of status-neutral concepts in targeted testing, for effective case identification and linkage to prevention and treatment services.

37

38 Methods: We conducted a cross-sectional study on 36 multi-stage sampled sites 39 across 4/10 provinces of Zimbabwe. Screened and non-screened patients were tested 40 and analysed for positivity ratios and linkage to post-test services. Data were 41 extracted using Epicollect5 and imported into EpiData software and Stata for cleaning 42 and analysis. Data were summarized as proportions, odds ratios and adjusted odds 43 ratios at 5% significance level.

44

45 **Results:** Of 23,058 HIV tests done, females constituted 55% (n=12,698), whilst 46 63.5% (n=14,650) were retests and positivity of 7.5% obtained. Screened patients 47 contributed 75.1% to the overall positivity (1,296/1,727), from 66% (n=15,289) of the 48 total tests conducted. The 45–49-year category was 3.6 times more likely to test 49 positive (a95%CI:2.67,4.90). Males were 3.09 times more likely to test positive in 50 adjusted analysis (a95%CI: 2.74, 3.49), from an 8% (n=912) positivity ratio. First 51 tests were 65% more likely to test HIV positive (a95%CI: 1.43, 1.91) whilst screened 52 patients were 3.89 times more likely to link to HIV prevention services (a95%CI: 53 3.05, 4.97), against 25.5% (n=1,871) linkage among patients not screened

54

55 Conclusion: Targeted and status-neutral testing are related and complimentary
56 concepts which, when simultaneously applied, potentiates case identification through
57 prioritizing high-risk individuals for testing, as well as arresting ongoing transmission
58 of HIV through effective linkage to HIV prevention and treatment. This approach
59 facilitates economic usage of limited resources, in generalized epidemics.

60

Keywords: Targeted testing, Status neutral testing, HIV testing services, HIV Risk
 assessment, HIV Screening algorithms

- 63
- 64
- 65
- 66

67 Introduction

68	Status-neutral HIV testing is a novel approach to HIV education, testing and
69	treatment that accentuates a continuum of care regardless of the individual's HIV
70	diagnosis [1]. The concept infers that all people, regardless of their HIV status, are
71	treated in the same way from the start of the HIV testing process and linked to
72	appropriate services based on their test results. Further, it envisages improved health
73	outcomes, the prevention of new infections and the establishment of a world where
74	HIV is untransmissible through prevention and treatment options availed to everyone
75	[2].
76	The concept also focuses on activities that meet the needs of populations at
77	risk or living with HIV, rather than dividing services into prevention or care. Status-
78	neutral approach to HIV prevention and care defines the entry point to care as the
79	time of an HIV test [3]. At this point, clients' needs are assessed, and they are
80	engaged and linked to appropriate services based on these needs, regardless of
81	whether their HIV test is positive or negative [4].
82	First introduced by the New York City Department of Health and Mental
83	Hygiene in 2016, this new paradigm is a comprehensive system of prevention that
84	includes all people affected by HIV, regardless of their HIV status [5–7]. It further
85	highlights elaborate steps that can lead to an undetectable viral load and steps for
86	effective combination HIV prevention. The concept is also premised on the assertion
87	that most countries have achieved the 95% targets and therefore should be focused on
88	consolidating these achievements by giving equal attention to negative testers, who
89	were largely neglected in the quest of chasing positivity ratio targets [8].
90	The concept is rapidly being embraced globally with the World Health
91	Organization (WHO) and Centers for Disease Control promoting it through various

92 for [9]. Many countries have since adopted the concept of variability influenced by93 context and needs.

94	Zimbabwe, located in sub-Saharan Africa, is one of the countries severely
95	affected by the HIV pandemic, where HIV remains firmly established as a generalized
96	epidemic with a prevalence of 11,01% and incidence of 17% translating to
97	approximately 23,000 new infections every year [10, 11]. (Figure 1)
98	To address her predicament, Zimbabwe has been implementing a Targeted
99	testing model that prioritizes high-risk individuals through a screening algorithm,
100	adopting differentiated testing models that include strengthening Index testing- a
101	proven high-yield HIV testing model [12].
102	Whilst, remarkably, the country has achieved the 95% targets, according to
103	UNAIDS HIV estimates, the country still bears a generalized epidemic contributed by
104	population and geographically varied sub-epidemics requiring innovations for case
105	finding and effective HIV prevention packages [13].
106	This context demands that Zimbabwe, like her Southern African counterparts,
107	needs interventions designed to arrest ongoing transmission of HIV, identify the
108	remaining cases, and put them on effective life-long treatment to bring the pandemic
109	to an end. This paper therefore interrogates the relevance of Status neutrality in the
110	context of a generalized epidemic, high new infections and established ongoing
111	transmission of HIV to recommend the context-specific application of the novel
112	status-neutral concept.
113	
114	Materials and Methods

115 *Study Design:*

116 We conducted a cross-sectional study, with an analytical component.

117 Setting:

118	General setting: Zimbabwe is a landlocked, low-income country in Southern
119	Africa located between Botswana, South Africa, Mozambique, and Zambia with an
120	estimated population of 16,3 million and a human development index of 0.593,
121	ranked number 174 globally out of 189 countries in 2022[14, 15]. The country is
122	divided into two urban provinces, eight rural provinces and 62 districts.
123	Zimbabwe National HIV Programme: The AIDS and TB Programme (ATP)
124	is mandated to coordinate the development of HIV/AIDS health policies and set up
125	national standards and guidelines as part of the national response to HIV in
126	Zimbabwe. Four sub-units under ATP, namely, HIV Prevention, Care and Treatment,
127	Prevention of Mother to Child Transmission (PMTCT) and Monitoring and
128	Evaluation (M & E). These sub-units are delegated to ensure seamless yet specialised
129	programming to ensure adequate response to the pandemic [16].
130	The HIV Prevention program oversees the activities of HIV Testing Services
131	(HTS) activities with the ATP. Since 2016, the HTS programme has been pursuing
132	targeted testing as an approach to reduce testing volumes, increase efficiency in HIV
133	testing and enhance the identification of people living with HIV, to enrol them on life-
134	long Antiretroviral Therapy (ART). Eligibility for HIV testing is done using a
135	validated Screening algorithm [17]. In this algorithm, high-risk individuals are offered
136	provider-delivered testing whilst those screened out are offered HIVST kits for self-
137	screen. Following a negative test result, the patient is further screened for eligibility
138	for combination prevention which includes PrEP.
139	Specific Study Site: The study sites were four provinces, selected out of 10
140	provinces in Zimbabwe. Manicaland is a province in eastern Zimbabwe. After Harare
141	Province, it is the country's second-most populous province, with a population of 1.75

142	million, as of the 2012 census [18]. Mashonaland West Province Mashonaland West
143	is located to the North of Zimbabwe and shares the international border with Zambia
144	in the North. Internally, the borders of the province are with Midlands Province in the
145	West, Matabeleland North in the West, Mashonaland Central in the East, Harare, and
146	Mashonaland East in the Southeast [19].
147	Matabeleland South Province covers the south-eastern plateau of Zimbabwe,
148	and it stretches to the Botswana border on the east and borders South Africa on the
149	South [20]. Midlands province has an area of 49,166 square kilometres and a
150	population of 1,614,94 [21].
151	Client population:
152	All clients who were tested for HIV and documented in HIV Testing registers,
153	at the 36 sampled facilities between 1 October 2023 to 31 December 2023 were
154	included in the study.
155	Sampling:
156	Multi-stage sampling was done to randomly select 4 out of 10 Zimbabwe
157	provinces using the lottery method. Further, 3 districts per province were randomly
158	selected resulting in 12 districts. All health facilities of the 12 districts were included
159	in the study resulting in a total of 36 health facilities being included. The sampling
160	criteria aimed to achieve a balanced representation of health facilities, resulting in a
161	mix of high and low volume, as well as urban and rural sites. (Table 1)
162	Data variables, sources of data and data collection:
163	Data were extracted from District Health Information System version 2
164	(DHIS2) as an excel report. The data was accessed on the 26 th of February 2024 for
165	research purposes. The data was exported to EpiData Analysis version 2.2.2.186
166	(EpiData Association, Odense, Denmark) and Stata v14 (Stata Corporation College

191	Demographic characteristics
190	Results
189	
188	therefore exempted from ethical clearances. No primary data was collected.
187	electronic database which does not include patient identifying data. The study was
186	Childcare head office. The study was based on data collected into the DHIS2
185	Approval to conduct this study was obtained from the Ministry of Health and
184	Ethics approval:
183	(95%CI) were expressed as a measure of association.
182	adjusted models. The unadjusted and adjusted odds ratios at 5% significance levels
181	Those variables with a p-value <0.25 in the unadjusted analysis were included in
180	unadjusted and adjusted generalized linear model (log-binomial regression) was used.
179	result and linkage to post-test services for both negative and positive testers, an
178	To assess the association between risk profile, the reason for an HIV test, the
177	to post-test services as documented in the respective registers.
176	all clients tested for HIV during the study period, the outcomes of the test and linkage
175	The number and proportion with a 95% confidence interval were used to summarize
174	range) for continuous data depending on whether they are normally distributed or not.
173	percentage for categorical data and mean (standard deviation) or median (interquartile
172	Socio-demographic characteristics of participants were summarized using
171	Analysis and statistics:
170	(yes/no), and specific services linked to. No patient level data was collected.
169	for an HIV test, reason for an HIV test, HIV test result, linkage to post-test services
168	collected: HTS number, name of the facility, name of the patient, age, sex, screening
167	Station, Texas, USA) for further cleaning and analysis. The following variables were

192	Of 23,058 patients tested for HIV, females constituted 55% (n=12,698) and
193	54.7% (n=12,615) patients belonged to the age group 25-49 years. In most patients,
194	66.3% (n=15,289) were documented to have been screened for eligibility before
195	testing, while 33.7% were not. Among the patients tested for HIV, 63.5% (n=14,650)
196	were retested while 1,727 tested positive, translating to a positivity ratio of 7.5%.
197	Across the districts, Gweru recorded the highest, 15.5% (n=3,575) number of tests
198	done whilst Mangwe recorded the least, 4.5% (n=1040) number of tests done (Table
199	2).
200	Screening, Testing Outcomes and Post-test Linkages
201	From a total of 23,058 patients who attended the sampled healthcare facilities,
202	66.3% (N=15,289) were screened for eligibility for testing. The positivity ratio among
203	these was 8.5% (N=1,296) and almost all of them were enrolled into care (N=1,294,
204	99.8%). The positivity obtained among the screened patients was 75.1% of the overall
205	positivity obtained in this study (1,296/1,727). Among the 7,769 (33.7%) clients who
206	were not screened before testing, 431 (5.5%) tested positive and this was 24.9% of the
207	overall positivity obtained in this study (431/1,727). Of the 7,338 (94.5%) patients
208	who tested negative, 1,871 (25.5%) were linked to HIV prevention services (Figure
209	2).
210	HIV Positivity and Linkage
211	The overall positivity ratio obtained in this study was 7.5% (1,727/23,058).
212	The 45–49-year category was 3.6 times more likely to test positive
213	(a95%CI:2.67,4.90). Males were 3.09 times more likely to test HIV positive in
214	adjusted analysis (a95%CI: 2.74, 3.49), from an 8% (n=912) positivity ratio. The first
215	tests were 65% more likely to test HIV positive (a95%CI: 1.43, 1.91) whilst patients

216 who were screened before testing were 3.89 times more likely to link to at least 1 HIV

217 prevention service (a95%CI: 3.05, 4.97). (Table 3.)

218

219 **Discussion**

A key finding in this study is that the status-neutral approach to HIV testing

221 complements targeted HIV testing, enabling prioritized testing and linkage to HIV

222 prevention and treatment services.

223 Strengths:

The availability of primary source documents, such as HTS registers at all

visited facilities facilitated the data abstraction process. In addition, the sampled 36

health facilities provided a large sample size that enabled us to draw inferences on the

227 population of the country.

228 Limitations:

229 Discrepancies between data abstracted from HTS registers, monthly

summaries and DHIS2 during data triangulation exposed data entry or computation

errors that could be rectified by onsite data analysis, and cascade generation.

232 Interpretation of key findings:

This study provided important insights into the role of status-neutral testing intargeted testing in Zimbabwe.

First, patients who were screened for their risk for HIV infection before testing scored a high positivity ratio of 8.5% compared with those who were not screened (5.5%). The risk screening was done using a standardized screening algorithm which

is part of standard service delivery by the country, in determining eligibility for an

HIV test [17].

240 Further, the screened patients contributed as high as 75% of the overall 241 positivity obtained, when the calculation combined with those not screened. This 242 indicates the relevance of targeted testing in Zimbabwe, in the context of a 243 generalized epidemic being managed against a backdrop of declining funding for 244 HIV, characterized by sporadic stockouts of testing commodities for HIV testing. This 245 finding is consistent with previous studies that underscore the importance of an 246 algorithm to determine risk and prioritize clients for HIV testing, whilst offering self-247 screen to those at low risk [17, 22–24] To remain on course of achieving and 248 sustaining the targets for case identification, it is therefore imperative to effectively 249 implement an algorithm that aids health workers in prioritizing patients who are most 250 likely to test HIV positive 251 Secondly, 98.7% (n=13,811) of the clients who tested HIV negative following 252 risk screening were linked to HIV prevention services. In multivariate analysis, the 253 probability of linkage among HIV-negative screened clients was 3.89 (a95%CI:3.05, 254 4.97). This finding indicates that screening clients for testing assists in focussed HIV 255 prevention linkage among the clients who test negative. Our findings are consistent 256 with the tenets of the status-neutral concept of equal emphasis on linkage to 257 prevention and treatment [6, 7, 25, 26] but vary with the placing of risk assessment 258 where other studies place it after the test, rather than before the test. Placing the risk 259 screening stage after the test results in an increased number of clients in the post-test 260 stage with an unknown risk profile requiring risk screening. The increased numbers, 261 particularly in our context of high numbers and high-frequency testing may affect the 262 vigilance with which the screening process is done [27, 28]. 263 In this study, we found the utility of risk screening being done before 264 conducting the test for the status-neutral concept to effectively complement the

265 targeted testing framework which reduces the high frequency of testing which does 266 not correspond with the risk profile. Implementing the status-neutral concept without 267 embedding it into targeted testing departs from the standardized retesting algorithm which restricts the highest frequency of HIV testing to once every three months, for 268 269 people at ongoing risk for HIV infection [7, 29]. 270 Third, 63.5% of the clients who tested for HIV were retests (n=14,650), and 271 yet first tests were 65% more likely to test HIV positive (a95%CI: 1.43, 1.91), 272 adjusted for age and sex. Most tests being retested may be suggestive of "over-

testing" or high-risk perception, particularly given the low positivity ratios obtained

[4]. Clients who test HIV negative at contact are retested annually if they fall into the

275 general population category and retested 3 monthly if they are at ongoing risk for HIV

transmissions, such as sero-different couples and those on PrEP, according to the

277 national retesting algorithm [30].

Finally, men were 3.09 times more likely to test HIV positive (a95%CI:2.74,

279 3.49) in adjusted analysis despite contributing 44.9% (10,360/23,058) of the tested

280 population. This finding implies that fewer men test, from which most test positive.

281 This finding corroborates previous studies and information in the public domain [31,

32]. Further, men are also less likely to adhere to treatment and more likely to have

unfavourable treatment outcomes, with attributable factors that include gender norms[30, 33].

285 Implications for policy and practice:

Targeted testing is the mainstay of HTS programming to achieve epidemic control. Complemented with status neutral approach to HIV testing will bring out a double-edged sword, one that prioritizes testing and linkage to both prevention and

treatment. The concept needs to be vigilantly implemented to expedite epidemic

290 control, whilst preventing new infections through linkage to prevention as well.

291 Conclusions

- 292 Targeted testing and status-neutral testing are related concepts which are
- 293 complimentary. Simultaneously applied, the concepts facilitate active identification of
- 294 people living with HIV to meet case identification targets, through prioritizing high-
- risk individuals for testing, followed by arresting ongoing transmission of HIV
- through effective linkage to HIV prevention and treatment. This approach will
- facilitate the best usage of limited resources, particularly in low to medium countries.
- 298

299 Acknowledgements

- 300 I acknowledge several individuals and institutions that made this study a success.
- 301 Special gratitude goes to my academic supervisors, Professor M. Tshimanga, Dr J.
- 302 Chirenda and Dr K. Takarinda, The Director of AIDS & TB Unit, Dr O. Mugurungi
- and the entire HTS team for their support and prodding during this study.
- 304
- 305
- 306
- 307
- 308
- 309

310 **References**

- 311 [1] Issue Brief: Status Neutral HIV Care and Service Delivery | Policy and Law |
 312 HIV/AIDS | CDC, https://www.cdc.gov/hiv/policies/data/status-neutral-issue313 brief.html (accessed 21 August 2023).
 314 [2] Demetre Daskalaki. A Status Neutral Approach: Achieving Together to end
- 314 [2] Demetre Daskalaki. A Status Neutral Approach: Achieving Together to en 315 HIV Epidemic. *New York City Department of Health*.

316	[3]	New York City Health. The New York City HIV Status Neutral Prevention and
317		Treatment Cycle. New York City, https://www.nyc.gov/site/doh/health/health-
318		topics/hiv-status-neutral-prevention-and-treatment-cycle.page (2022, accessed
319		4 October 2023).
320	[4]	Phiri DL, Rees K, Davies N. Outcomes of a model for re-testing HIV-negative
321		index contacts in Sedibeng, South Africa. South Afr J HIV Med 2023; 24: 1482.
322	[5]	Mancuso N, Mansergh G, Stephenson R, et al. Factors associated with mobile
323		app-based ordering of HIV self-test kits among men who have sex with men in
324		Atlanta, Detroit and New York City: an exploratory secondary analysis of a
325		randomized control trial. J Int AIDS Soc; 26. Epub ahead of print 1 May 2023.
326		DOI: 10.1002/jia2.26100.
327	[6]	Redefining Prevention and Care: A Status-Neutral Approach to HIV - PubMed,
328		https://pubmed.ncbi.nlm.nih.gov/29977957/ (accessed 22 August 2023).
329	[7]	Michael Canty, Dorian Freeman, Yazmin Silvia, et al. Employing Status-
330		Neutral Approaches to End the HIV Epidemic. 2022.
331	[8]	CDC. Status Neutral HIV Prevention and Care Prevent Effective
332		Interventions HIV/AIDS CDC, https://www.cdc.gov/hiv/effective-
333		interventions/prevent/status-neutral-hiv-prevention-and-care/index.html
334		(accessed 21 August 2023).
335	[9]	HIV/AIDS WHO Regional Office for Africa.
336		https://www.afro.who.int/health-topics/hivaids (accessed 4 October 2023).
337	[10]	Zimbabwe UNAIDS,
338		https://www.unaids.org/en/regionscountries/countries/zimbabwe (accessed 4
339		October 2023).
340	[11]	UNAIDS 2022. Global HIV Statistics.
341		https://www.unaids.org/en/resources/fact-sheet (2022, accessed 14 July 2023).
342	[12]	Ministry of Health and Child care. Zimbabwe Operational and Service
343		Delivery Manual (OSDM), 2022. Harare, 2022.
344	[13]	Mendoza C. UNAIDS Update Global HIV Numbers. AIDS Rev 2019; 21: 170-
345		171.
346	[14]	Zimbabwe - Human Development Index - HDI 2021 countryeconomy.com,
347		https://countryeconomy.com/hdi/zimbabwe (accessed 12 February 2024).
348	[15]	Population, total - Zimbabwe Data,
349		https://data.worldbank.org/indicator/SP.POP.TOTL?locations=ZW (accessed
350		12 February 2024).
351	[16]	Zimbabwe Ministry of Health and Child Care. Ministry of Health and Child
352		Welfare, National Tuberculosis Program – Strategic Plan (2017-2020). Harare,
353		Zimbabwe, 2018.
354	[17]	Mugauri HD, Chirenda J, Takarinda K, et al. Optimising the adult HIV testing
355		services screening tool to predict positivity yield in Zimbabwe, PLOS Global
356		Public Health. 2022; 1–17.
357	[18]	UNDP and Government of Zimbabwe. Zimbabwe Human Development Report
358		2017. Climate Change and Human Development: Towards Building a Climate
359		Resilient Nation. Harare, Zimbabwe, 2017.
360	[19]	World Population Review. Zimbabwe Population 2018,
361		http://worldpopulationreview.com/countries/zimbabwe-population/ (2018,
362		accessed 17 April 2018).
363	[20]	Zimstat. Zimbabwe Population Census 2012. Population Census Office 2012;
364		1–151.

365 366	[21]	Zimbabwe Country Profile UN in Zimbabwe, http://www.zw.one.un.org/uninzimbabwe/zimbabwe-country-profile (accessed
367		21 May 2019).
368	[22]	Mugauri HD, Karakadzai M, Mugurungi O, et al. Exploring HIV Testing
369		Models for Differentiated Service Delivery in Southern Africa: A Systematic
370 271		should of print 5 December 2022 DOI: 10.18502/JEPHDME V712.14287
371	[23]	Howard I HIV Screening Scientific Ethical and Legal Issues <i>Journal of</i>
373	[23]	Legal Medicine 1988: 9: 601–610
374	[24]	Mover VA Screening for HIV. U.S. Preventive Services Task Force
375	[<u> </u>	recommendation statement. Ann Intern Med 2013; 159: 51–60.
376	[25]	Know Your HIV Status: What it Means to be Status Neutral - PrEP Daily,
377		https://prepdaily.org/know-your-hiv-status-what-does-it-mean-to-be-status-
378		neutral/ (accessed 21 August 2023).
379	[26]	Myers JE, Braunstein SL, Xia Q, et al. Redefining Prevention and Care: A
380		Status-Neutral Approach to HIV. Open Forum Infect Dis; 5. Epub ahead of
381		print 1 June 2018. DOI: 10.1093/OFID/OFY097.
382	[27]	Moucheraud C, Chasweka D, Nyirenda M, et al. Simple Screening Tool to
383		Help Identify High-Risk Children for Largeted HIV Testing in Malawian
384 205		Inpatient wards. JAIDS-JOURNAL OF ACQUIRED IMMUNE DEFICIENCY
386	[28]	Farnham PG, Gorsky RD, Holtgrave DR, et al. Counseling and testing for HIV
387	[20]	nevention: Costs effects and cost-effectiveness of more ranid screening tests
388		Public Health Reports 1996: 111: 44–53
389	[29]	ACHA Education Center: The Status-Neutral HIV Testing Continuum.
390	Γ.1	https://education.acha.org/products/the-status-neutral-hiv-testing-continuum-2
391		(accessed 21 August 2023).
392	[30]	Why does HIV kill more men than women? - Bhekisisa,
393		https://bhekisisa.org/article/2017-08-08-why-does-hiv-kill-more-men-than-
394		women/ (accessed 9 April 2024).
395	[31]	Lopez-Varela E, Augusto O, Fuente-Soro L, et al. Quantifying the gender gap
396		in the HIV care cascade in southern Mozambique: We are missing the men.
397	[20]	PLoS One 2021; 16: e0245461.
398	[32]	Hensen B, Taoka S, Lewis JJ, et al. Systematic review of strategies to increase
399 400	[22]	Gus Cairns, South Africa: woman may have higher rates of HIV than man
400	[33]	because fewer men are on treatment <i>AIDSMan</i>
402		https://www.aidsman.com/news/mar-2018/south-africa-women-may-have-
403		higher-rates-hiv-men-because-fewer-men-are-treatment (2020) accessed 9
404		April 2024).
405		1 /*
406	Figu	re legends
407	Figu	re 1: HIV Prevalence and Incidence Rates in Zimbabwe, 2018-2022 (Source:
408	UNA	IDS HIV Estimates)

409 Figure 2. HIV Testing and Post-test Linkages, Zimbabwe, 2024

411 Tables

412 Table 1. Study sites, Zimbabwe, 2024

Manicaland Province	Mash West Province	Matabeleland South	Midlands Province
		Province	
Mutare District	Chegutu District	Gwanda District	Gweru District Gweru
Mutare Provincial Hospital	Katanga Utano Clinic	Gwanda Provincial	Provincial Hospital
Zimunya Clinic	Pfupajena Municipal	Hospital	Chikwingwizha Mission
Mt Zuma Clinic	Clinic Selous Clinic	Phakama Clinic	Hospital
		Manama Mission	Lower Gweru Clinic
		Hospital	
Chipinge District	Makonde District	Mangwe District	Kwekwe District
Chikore Mission Hospital	Chinhoyi Provincial	Plumtree District	Kwekwe General Hospital
Chipinge Town Clinic	Hospital	Hospital	Amaveni Clinic
Tanganda Rural Health	Chikonohono	Tshitshi Clinic	Nyoni Rural Health
Centre	Municipal Clinic	Dingumuzi Clinic	Centre
	Alaska Municipal		
	Clinic		
Makoni District	Sanyati District	Umzingwane District	Zvishavane District
Rusape District Hospital	Kadoma General	Nhlangano Clinic	Mandava Health Centre
Katsenga Rural Health	Hospital	Nswazi Clinic	Mabasa Clinic
Centre	Ordoff Clinic	How Mine Clinic	Mtambi Clinic
	Waverly Municipal	Kumbudzi RHC	
	Clinic		

- 413
- 414
- 415

- . . .
- 417
- 418

419 Table 2. Clinical and demographic profile of patients, Zimbabwe, 2024.

420 (N=23,058)

Variat	Variable Number (%)*			
Total		23,058	(100)	
Age in	years			
0	15-24	3,524	(15.3)	
0	22-29	3,588	(15.6)	
0	30-34	5,223	(22.7)	
0	35-39	3,679	(16.0)	
0	40-44	4,315	(18.7)	
0	45-49	2,398	(10.4)	
0	>/= 50	331	(1.4)	
Gender	r			
0	Male	10,360	(44.9)	
0	Female	12,698	(55.1)	
Risk So	creened before testing			
0	Yes	15,289	(66.3)	
0	No	7,769	(33.7)	
Type o	f HIV Test			
0	First Test	7,906	(34.3)	
0	Retest	14,650	(63.5)	
0	Not Documented	502	(2.2)	
HIV To	est Result			
0	Negative	21,331	(92.5)	
0	Positive	1,727	(7.5)	
Testing	g District			
0	Mangwe	1040	(4.5)	
0	Sanyati	1232	(5.3)	
0	Gwanda	1239	(5.4)	
0	Chipinge	1350	(5.9)	
0	Mutare	1254	(5.4)	
0	Gweru	3575	(15.5)	
0	Kwekwe	2443	(10.6)	
0	Chegutu	3279	(14.2)	
0	Makonde	2997	(13.0)	
0	Umzingwane	1144	(5.0)	
0	Makoni	2424	(10.5)	
0	Zvishavane	1081	(4.7)	

^{421 *}Column percentage

425

427 Table 3. Factors associated with HIV Positivity among patients who tested for

428 HIV, Zimbabwe, 2024. (N=23,058)

Variable		Total HIV Positive [#]		ositive [#]	OR (95 CI)	aOR (95 CI)#	
		Ν	Ν	(%)**	_		
Total		23,058	1,727	(7.5)	-	-	
Age in	years						
0	15-24	3,524	440	(12.5)	7.43 (5.68, 9.73)	7.42 (5.65, 9.86)^	
0	25-29	3,588	72	(2.0)	Ref	Ref	
0	30-34	5,223	92	(1.8)	1.69 (1.22, 2.33)	1.68 (1.22, 2.34)^	
0	35-39	3,679	334	(9.1)	10.32 (7.90, 13.49)	10.31 (7.92, 13.54)	
0	40-44	4,315	342	(7.9)	12.26 (9.21, 16.31)	12.23 (9.22, 16.36)	
0	45-49	2,398	410	(17.1)	23.61 (2.67, 4.89)	3.61 (2.67, 4.90)^	
0	>/= 50	331	29	(8.8)	5.07 (3.62, 7.11)	5.06 (3.62, 7.12)^	
Gender							
0	Male	10,360	912	(8.8)	3.10 (2.74, 3.49)	3.09 (2.74, 3.49)^	
0	Female	12,698	815	(6.4)	Ref	Ref	
Type of	f HIV Test						
0	Retest	7,906	404	(5.1)	Ref	Ref	
0	First Test	14,650	1,301	(8.9)	1.66 (1.44, 1.91)	1.65 (1.43, 1.91)^	
0	Unspecified	502	22	(4.4)	1.38 (0.91, 2.09)		
Linkag	e to Prevention*						
0	Screened	15,289	-	(66.3) *	3.90 (3.05, 4.97)	3.89 (3.05, 4.97)^	
0	Not Screened	7,769	-	(33.7)	Ref	Ref	

430 [#]Positivity excludes missing variables

431 **Row percentages; *Modified Poisson regression for aOR; ^p<0.05, *** Fisher's

432 Exact

*Denominator is all tests done (N=23,058), ## Denominator is all Negative tests

434 (N=21,331)

435

- 436
- 437
- 438

Fig 1. HIV Prevalence and Incidence Rates in Zimbabwe

Fig 1. HIV Prevalence and Incidence Rates in Zimbabwe