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Abstract

Objective: Sexually Transmitted Infections (STIs) present significant challenges to
global public health, affecting physical and mental well-being and straining healthcare
systems and economies. This study aims to enhance the predictive performance of
models for congenital syphilis prediction by incorporating additional information
obtained during gestational follow-up. Building upon the work of Teixeira et al. [1],
which utilizes clinical and sociodemographic data, our model was enriched with results
from venereal disease research laboratory (VDRL) and rapid tests for congenital syphilis
conducted on pregnant women.Method: The dataset utilized in this study comprised
47,604 records spanning the period from 2013 to 2022, with 27 attributes collected from
pregnant women enrolled in the Mãe Coruja Pernambucana Program in Pernambuco,
Brazil. Among these attributes, we included clinical and sociodemographic factors, as
well as results from venereal disease research laboratory (VDRL) and rapid tests for
congenital syphilis. Results: Our proposed model surpassed Teixeira’s models
exhibiting higher specificity (94.74%) and a slight increase in sensitivity (70.37%).
Conclusions: Our study highlights the value of incorporating additional information
from VDRL and rapid tests into models for predicting congenital syphilis. The
combined approach involving both clinical, sociodemographic, and test result data
enhances the accuracy of predictions thereby facilitating better informed healthcare
decisions at different stages of pregnancy. This approach also holds significant potential
in combating and managing congenital syphilis by providing assistance to health system
decision makers and public policymakers. As a result, it can ultimately enhance the
overall outcomes of maternal and child health and contribute to disease control.

Introduction

The World Health Organization (WHO) [2] estimates that over 7 million people
worldwide were infected by syphilis in 2020. Syphilis is a curable and treatable disease
caused by the bacterium Treponema pallidum [3]. It is a complex infection with diverse
clinical manifestations and three stages [3–5]. Syphilis during pregnancy is the second
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leading cause of stillbirths globally, and also contributes to preterm birth, low birth
weight, neonatal death, and infections in newborns, amongst other conditions [4].
Congenital syphilis (CS) is the condition where syphilis is transmitted from an infected
mother to her baby during pregnancy or delivery; it can lead to severe sequelae
including stillbirth, neonatal death, low-birth weight and prematurity, sepsis, neonatal
conjunctivitis and congenital deformities [6, 7].

With 22,065 reported cases of CS in 2020, Brazil has the highest number of reported
cases of CS in the Americas [5]. Studies have consistently note that high incidences of
CS in the north and northeast regions of Brazil, with the Brazilian state capitals of
Recife, Campo Grande, Rio de Janeiro, Porto Alegre, and Manaus having the greatest
spatial and spatiotemporal CS risk [8, 9]. Changes in migration patterns, the structure
of regional health care services, delayed treatment, the prevalence of untreated partners,
and penicillin shortages are amongst the factors attributed to the increased CS
incidences and CS risk in these regions [8–10].

Machine learning holds great promise in transforming STIs surveillance and
interventions [11]. Recently, Teixeira et al. [1] assessed the efficacy of various machine
learning models in predicting adverse outcomes associated with CS using data collected
from 2013 to 2021 by Mãe Coruja Pernambucana Program (PMCP), a social program in
Pernambuco, Brazil. The PMCP data included clinical and sociodemographic data
regarding antenatal care and the outcomes for pregnant women and their children [1].
The pre-processed data set used by Teixeira et al. [1] is publicly available at
https://data.mendeley.com/datasets/3zkcvybvkz/1. Despite promising results,
none of the models evaluated in their work achieved an accuracy greater than 70%,
illustrating the difficulty in classifying possible outcomes of CS using only clinical and
sociodemographic data [1].

Our main objective is to examine whether the inclusion of additional information
acquired during the gestational follow-up process leads to an improvement in the
predictive performance of models for CS. We supplement the clinical and
sociodemographic data used by Teixeira et al [1] with venereal disease research
laboratory (VDRL) and rapid test results from pregnant women. By incorporating this
extra information for training our models, our hypothesis is that we can improve the
model prediction process and, consequently, may be able to provide more precise
predictions.

Materials and methods

Data set

We declare that the research has been approved by the Brazilian Human Research
Ethics Board (Comitê de Ética em Pesquisa [CEP]) under number 12438019.2.0000.5208
and all methods were performed in accordance with the Brazilian regulations that do
not require consent for studies using unidentified data from the Brazilian data health
systems.

Similar to Teixeira et al. [1], the data used in this work was provided by the PMCP.
The data that support the findings of this study are openly available in Mendeley Data
at http://doi.org/10.17632/3zkcvybvkz.2. It comprises 12 anonymized tables
extracted from the Sistema de Informação Mãe Coruja (SIS-MC) covering the period
from 2013 to 2022; Teixeira et al. [1] use data up to 2021. Each table is related to a
specific type of information including child-related information, childbirth, gestation,
prenatal care, women’s profiles, and other relevant information related to pregnancy
and child health, that were collected during prenatal care appointments.

After completing the tables merging process, our data set was consolidated into a
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unified data set consisting of 256 attributes and 218,014 records. In this data set, we
identified 1,003 records as positive for CS and 46,666 as negative. It is important to
note that over 170,000 records (78% of the data set) do not contain any information on
CS. These empty records represent a major challenge for the SIS-MC, as they may
indicate that tests are not being carried out right after childbirth or that the process of
digitizing information is not being done appropriately. As it is not possible to describe
all 256 original attributes, it is possible to find the data dictionary at:
https://www.dropbox.com/scl/fi/3zbenbf6jhkqme0yoz725/

Attributes-dicionary.pdf?rlkey=fddwiyr2zs8tiecfpsybdkjnp&dl=0.

Data pre-processing

In order to use this unified data set to train our machine learning models, we perform
some important pre-processing tasks including data cleaning and transformation that
assist in the process of training and evaluating the models. Figure 1 illustrates the steps
used to pre-process our data set.

Fig 1. Data pre-processing methodology (Adapted from [1]).

The pre-processing methodology used in this study was adapted from Teixeira et
al. [1] as we intend to compare our results with theirs. The same five steps were
performed: a) manual feature selection; b) removal of records with empty indicators of
family income; c) removal of outliers; d) creation of the ”age” attribute and attribute
type conversion; and e) filling in empty attributes. These steps are further detailed in
Teixeira et al. [1]. In contrast to Teixeira et al. [1], we added a new attribute (labeled
Mother Syphilis Test Result), the focus of our study.

The number of records in the pre-processed data set used in our study uses an
updated data set with new records from 2022. This increases the total data set from
41,762 records as per Teixeira et al. [1] to 47,604 records in this study. This increase
also led to an increase in the number of positive cases for CS from 826 in Teixeira et
al. [1] to 1002 in this study.

Experiments’ methodology

Our objective is to investigate whether the inclusion of information obtained during
pregnancy can improve the performance of our models in predicting CS. Our hypothesis
is that the addition of the attribute related to the first syphilis test performed on the
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mother during pregnancy (Mother Syphilis Test Result) impacts the model’s learning
and, consequently, its performance in the evaluation metrics.

For comparison, we use the scenario that produced the best results by Teixeira et
al. [1]. This scenario, called BODS-Expert (Balanced with One-hot Encoding Data Set
from the expert), which is a data set built by considering attributes carefully chosen by
health experts with balanced data, applying the one-hot encoding technique.

In this study, we want to compare and discuss the performance of our proposed
approach (named Silva scenario) against two other approaches. The Silva scenario
involves replicating the data set with the inclusion of the attribute indicating the first
syphilis test performed by the mother during her pregnancy
(Mother Syphilis Test Result) and training a set of machine learning models. The other
approaches are the Original Teixeira model and the Updated Teixeira model.
The Original Teixeira model is the best model presented in Teixeira et al. [1]. The
Updated Teixeira model replicates the scenario conducted by Teixeira et al. [1] using
the same updated data set we are using in this study.

To enable the comparison, we performed additional pre-processing steps, as shown in
Figure 2, to align with the Teixeira scenario and replicate the data set to retrain the
Original Teixeira model and apply the same experiment in the Silva scenario with our
updated data set.

Fig 2. Data set replication process used for Updated Teixeira model and
Silva model.

Table 1 shows the attributes selected by the health experts including the
Mother VDRL Result attribute, comprising 13 attributes. The results of the application
of one-hot encoding, transforming these 13 attributes into 49 attributes. This relates to
the first two steps of Figure 2.

To retrain the model based on the Original Teixeira scenario, we don’t use the
Mother VDRL Result attribute and apply the random undersampling data balancing
technique. This results in a data set containing 48 attributes and 2,004 records with an
equal distribution of 1,002 records for each class.

In Table 1, the Mother VDRL Result is a categorical attribute with values such as
positive, negative, and not informed. We transformed it into binary format (positive
and negative). The ’not informed’ category includes pregnant women who either did not
undergo the VDRL exam or rapid test for syphilis, or underwent the exams but their
results were not recorded in the system. Consequently, all records associated with ’not
informed’ values in the Mother VDRL Result attribute were excluded. This led to a
data set comprising 11,201 records, with 344 testing positive for CS and 10,857 testing
negative. To tackle the class imbalance, we employed the same data balancing technique
as used in the Teixeira model, resulting in a balanced data set for the VDRL model,
consisting of 688 records. This data set is utilized for training various machine learning
models in the Silva scenario.

The methodology used to train and test all models starts by splitting our data set
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Table 1. Attributes selected by health experts plus Mother VDRL Result

Attribute Description Type
VDRL Result VDRL exam result Binary
Plan Pregnancy Planned pregnancy Categorical
Has Preg Risk Has pregnancy risk Categorical
Marital Status Marital status Categorical
Food Insecurity Food insecurity Categorical
Num Abortions Number of abortions Categorical
Num Liv Children Number of living children Categorical
Num Pregnancies Number of pregnancies Categorical
Fam Planning Family planning information Categorical
Educ Level Educational level Categorical
Fam Income Family income Categorical
Age Age of pregnant woman Numerical
Mother Syphilis Test Result Mother’s first syphilis test result Categorical

into training (80%) and testing (20%) sets. The training set was used to train the
models, while the test set was reserved exclusively for evaluating the performance of the
models in the final stage.

In this paper, we utilize the following tree-based models for analysis: Random Forest,
AdaBoost, Gradient Boost, and XGBoost. These models incorporate hyperparameters
that play a crucial role in the learning process, but are not learned during the training.
To identify the best hyperparameters for training, we employed the grid search
technique. This technique involves systematically exploring a predefined search space to
evaluate all possible combinations and determine the best learning configuration among
the options.

For the grid search, we utilize a k-fold cross-validation, with k=5, and evaluate the
performance of each model using the F1-score as the evaluation metric. The search
space for each model, specifying the factors and levels, is summarized in Table 2.

Table 2. Grid Search factors and levels

Model Hyperparameters Values

Random Forest
n estimators
criterion
max depth

[50, 100, 150, 200]
[’entropy’, ’gini’]
[None, 1, 3, 5, 7, 9, 11]

AdaBoost
n estimators
learning rate

[50, 100, 150, 200]
[0.01, 0.1, 0.5, 1]

GradientBoost

n estimators
learning rate
loss
max depth

[50,100,150,200]
[0.01, 0.1, 0.5, 1]
[’deviance’, ’exponential’]
[None, 1, 3, 5, 7, 9, 11]

XGBoost
learning rate
’max depth
n estimators

[0.01, 0.1, 0.5, 1]
[1, 3, 5, 7, 9, 11]
[50,100,150,200]

After executing the grid search, we obtain the best hyperparameters for each model.
We then proceed to the model evaluation phase. Since the results of our experiments are
deterministic, we do not calculate the cut off for significance (p-value) used to conduct
statistical analysis, but therefore to quantitatively evaluate the models, we use the
following evaluation metrics: accuracy, precision, sensitivity, specificity, and F1-score.
Our experiments were performed on Google Colab, using Python with pandas version
1.5.3, numpy version 1.22.4, sklearn version 1.2.2 and xgboost version 1.7.6 libraries.
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Results

The overall baseline characteristics of the pre-processed data set related to the pregnant
women assisted by the PMCP are presented in Table 3.

Table 3. Baseline characteristics of the data set.

Variables Total Positive Negative
Total: n (%) 11201 10857 344
Plan Pregnancy: n (%)
Yes 4606 (41.1) 4490 (41.4) 116 (33.7)
No 6517 (58.2) 6296 (58.0) 221 (64.2)
Missing 78 (0.7) 71 (0.7) 7 (2.0)
Has pregnancy risk: n (%)
Yes 1689 (15.1) 1604 (14.8) 85 (24.8)
No 9014 (80.5) 8778 (80.9) 236 (68.6)
Missing 498 (4.4) 475 (4.4) 23 (6.7)
Marital status: n (%)
Single 3621 (32.3) 3495 (32.2) 126 (36.6)
Married 2624 (23.4) 2582 (23.8) 42 (12.2)
Widowed 20 (0.2) 19 (0.2) 1 (0.3)
Judicial separation 31 (0.3) 29 (0.3) 2 (0.6)
Divorced 78 (0.7) 77 (0.7) 1 (0.3)
Other 4827 (43.1) 4655 (42.9) 172 (50.0)
Food insecurity: n (%)
Yes 4939 (44.1) 4846 (44.6) 93 (27.0)
No 1989 (17.8) 1942 (17.9) 47 (13.7)
Missing 4273 (38.1) 4069 (37.5) 204 (59.3)
Number of abortions: n (%)
None 4354 (38.9) 4233 (39.0) 121 (35.2)
One 1397 (12.5) 1335 (12.3) 62 (18.0)
More than one 335 (3.2) 344 (3.2) 11 (3.2)
Missing 5095 (45.5) 4945 (45.5) 150 (43.6)
Number of living children: n (%)
None 1650 (14.7) 1604 (14.8) 46 (13.4)
One 2962 (26.4) 2883 (26.6) 79 (23.0)
Two 1359 (12.1) 1303 (12.0) 56 (16.3)
More than two 937 (8.4) 894 (8.2) 43 (12.5)
Missing 4293 (38.3) 4173 (38.4) 120 (34.9)
Number of pregnancies: n (%)
None 1070 (9.6) 1027 (9.5) 43 (12.5)
One 3558 (31.8) 3476 (32.0) 82 (23.8)
Two 2391 (21.3) 2321 (21.4) 70 (20.3)
More than two 2536 (22.6) 2446 (22.5) 90 (26.2)
Missing 1646 (14.7) 1587 (14.6) 59 (17.2)
Received information about family planning: n (%)
Yes 5852 (52.2) 5683 (52.3) 169 (49.1)
No 3523 (31.5) 3417 (31.5) 106 (30.8)
Missing 1826 (16.3) 1757 (16.2) 69 (20.1)
Level of schooling: n (%)
Illiterate 101 (0.9) 96 (0.9) 5 (1.5)
Complete elementary school 306 (2.7) 294 (2.7) 12 (3.5)
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Incomplete elementary school 1134 (10.1) 1080 (9.9) 54 (15.7)
Complete middle school 637 (5.7) 613 (5.6) 24 (7.0)
Incomplete middle school 2294 (20.5) 2217 (20.4) 77 (22.4)
Complete high school 4003 (35.7) 3918 (36.1) 85 (24.7)
Incomplete high school 1942 (17.3) 1867 (17.2) 75 (21.8)
Complete superior school 337 (3.0) 332 (3.1) 5 (1.5)
Incomplete superior school 225 (2.0) 223 (2.1) 2 (0.6)
Missing 222 (2.0) 217 (2.0) 5 (1.5)
Family income: n (%)
Less than or equal to R$ 500.00 4563 (40.7) 4436 (40.9) 127 (36.9)
Between R501.00andR 1000.00 2293 (20.5) 2213 (20.4) 80 (23.3)
More than R$ 1001.00 1125 (10.0) 1090 (10.0) 35 (10.2)
Missing 3220 (28.7) 3118 (28.7) 102 (29.7)
Age: mean (SD) 25.5 (6.6) 25.5 (6.6) 25.0 (6.5)
Mother’s first syphilis test result: n (%)
Positive 428 (3.8) 208 (1.9) 220 (64.0)
Negative 10773 (96.2) 10649 (98.1) 124 (36.0)

Table 4 displays the best hyperparameters found by the grid search for each model,
along with the evaluation metrics using the test set, for both the Updated Teixeira
scenario and the Silva scenario.

Table 4. The best hyperparameters from grid search and the respective evaluation
metrics for the Teixeira scenario with updated data set and Silva scenario using the test
set.

Models Best Hyperparameters Accuracy Precision Sensitivity Specificity F1-score
Updated Teixeira Scenario

Random
Forest

criterion: ’entropy’,
max depth: 1,
n estimators: 100

56.86% 55.56% 63.13% 50.74% 59.10%

AdaBoost learning rate: 1.0,
n estimators: 50

60.10% 59.05% 62.63% 57.64% 60.78%

Gradient
Boost

learning rate: 0.1,
loss: ’exponential’,
max depth: 1,
n estimators: 100

58.60% 57.77% 60.10% 57.14% 58.91%

XGBoost
learning rate: 0.01,
max depth: 5,
n estimators: 150

58.60% 57.27% 63.64% 53.69% 60.29%

Silva scenario
Random
Forest

criterion: ’gini’,
max depth: None,
n estimators: 100

80.43% 95.00% 70.37% 94.74% 80.85%

AdaBoost
learning rate: 1.0,
n estimators: 50

78.26% 91.80% 69.14% 91.23% 78.87%

Gradient
Boost

learning rate: 0.01,
loss: ‘deviance’,
max depth: 3,
n estimators: 50

79.71% 100.00% 65.43% 100.00% 79.10%
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XGBoost
learning rate: 0.1,
max depth: 5,
n estimators: 50

76.09% 88.71% 67.90% 87.72% 76.92%

Regarding the models from the Updated Teixeira scenario, their performance is quite
similar overall, with AdaBoost generally achieving the best results in terms of accuracy,
precision, sensitivity, specificity, and F1-score. The XGBoost had the highest sensitivity
at 63.64%, closely followed by Random Forest at 63.13%, indicating their potential for
effectively capturing positive instances. Considering the specific implications for
predicting CS, the results highlight the importance of models that can strike a balance
between high sensitivity and precision.

As for the models from the Silva scenario, the Random Forest achieved the highest
accuracy of 80.43%, F1-score of 80.85%, and a sensitivity of 70.37% compared to the
other models. Notably, the Gradient Boost exhibited high precision and specificity, but
its sensitivity was significantly lower compared to the other models. Additionally, when
excluding the Gradient Boost, the Random Forest still demonstrates the best
performance in terms of precision (95%), and specificity (94.74%). These results
highlight the robustness and effectiveness of the Random Forest within the Silva
scenario for predicting CS.

In order to compare the results obtained, we designate Adaboost as the best model
for the Updated Teixeira scenario, calling it the Updated Teixeira model. For the
Silva scenario, the Random Forest model was identified as the best choice, referred to as
the Silva model. Figure 3 presents a radar graph where we show the Updated Teixeira
model, the Silva model and the Original Teixeira model based on the five evaluation
metrics.

Fig 3. Radar graph comparing the best models of each scenario.

These findings suggest that the inclusion of additional information about the
Mother VDRL Result led to an enhancement in the model’s ability to accurately
identify negative cases (improved specificity) while slightly compromising its ability to
correctly identify positive cases (decreased sensitivity). Overall, the Silva model
demonstrated superior performance compared to the Original Teixeira models across all
metrics. There was an improvement in the specificity metric, increasing from 52.12% to
94.74%. However, the model still encountered challenges in terms of sensitivity, with an
increase from 68.67% to 70.37%.
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Discussion

The main objective of this study was to examine whether the inclusion of additional
information acquired during the gestational follow-up process leads to an improvement
in the predictive performance of models for CS. In this respect, our results confirm that
the proposed approach, the Silva scenario, consistently outperforms the benchmark
models across multiple machine learning algorithms (Random Forest, AdaBoost,
Gradient Boost, and XGBoost). The Silva models outperform the benchmarks across all
metrics including accuracy, precision, sensitivity, specificity, and F1-score, indicating its
effectiveness in predicting CS, and as such providing greater predictive power and
valuable insights for early intervention and appropriate medical care. Furthermore, we
confirm our hypothesis regarding the importance of the inclusion of the
Mother VDRL Result in the prediction of CS using machine learning.

From a practical perspective, both options are not mutually exclusive. Both models
can be used as decision support tools for healthcare professionals depending on the local
circumstances. For example, the Original Teixeira model can be employed for all
pregnant women, offering crucial signals to healthcare professionals for required and
improved treatment without the need for additional laboratory tests and associated
delays. However, when and if a pregnant woman undergoes the first VDRL exam or a
rapid test for syphilis, it might be advisable to utilize the Silva model, which exhibits
stronger evaluation metrics. This twin track approach ensures the utilization of both
models to support healthcare decisions and enhances the precision of predictions for
pregnant women at different stages of their pregnancy.

There are a number of strengths and limitations to this study. The data is
longitudinal, current, and relatively large for this type of study and compares favorably
with prior research. As is evident from the results, despite the number of cases of CS in
the sample being low, the proposed approach resulted in acceptable performance.
Notwithstanding this, larger and more diverse cohorts from across Brazil and other
countries would likely result in even better performance particularly with respect to
sensitivity. While over time, increased digitisation combined with improved record
keeping will result in larger data sets in Brazil, in the near future, greater use of
international data is anticipated.

As discussed earlier, in Brazil, the volume of empty records in the SIS-MC is a
significant issue and a substantial percentage of people with syphilis are asymptomatic.
Treating syphilis as early as possible can significantly reduce complications for mothers
and babies. The effective operationalisation of machine learning-based decision support
tools, such as the Original Teixeira model and Silva model, requires the required data
being collected as completely, accurately and early as possible. Relatedly, new data
attributes may also result in greater prediction accuracy particularly in the case of
machine learning models that rely on attributes chosen by health experts such as the
BODS-Expert approach used in Teixeira et al. [1] and this study. For example, this may
include the number of prenatal care appointments, clinical data on partners, settlement
type (urban, rural, or sparse settings) as well as other sociodemographic indicators.
This infers greater collaboration is required between healthcare professionals and
machine learning researchers and designers.

This study has achieved high predictive values for CS. Firstly, it is unclear whether
similar approaches can be followed for manifestations of syphilis where data on the focal
person may differ from that collected for pregnant women. Secondly, prognosis is not
considered which may prove to be a fruitful and impactful avenue of research.

In conclusion, machine learning models with sufficient clinical and administrative
(incl. sociodemographic) data can present promising results for predicting the risk of CS.
With greater, more diverse, and more complete data, model performance and in
particular model sensitivity can be improved even further. Providing individualized
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probabilities of CS to healthcare practitioners as a decision support tool can have a
dramatic impact on reducing complications for mothers and babies. Unfortunately, the
highest incidences of CS are often those countries where there are substantial issues in
relation to digital health literacy and the routine collection and availability of relevant
data. Challenges which must be overcome if the promised positive impacts of machine
learning in health is to be fulfilled.

Conclusions

The significant surge in reported cases of CS underscores a mounting public health
challenge in Brazil [12]. While tests and treatments for syphilis are accessible through
primary health care, early detection of these risks during pregnancy is crucial for
effective treatment and monitoring, thereby averting adverse outcomes. In this work,
investigated and compared Machine Learning models for categorizing CS, utilizing
clinical and sociodemographic data factors, and assessing the model’s efficacy in
incorporating additional attributes during pregnancy.

We evaluated four machine learning techniques: Random Forest, AdaBoost,
Gradient Boost, and XGBoost. We used the BODS Experiment proposed in Teixeira et
al. [1], which in the work in question obtained the best results. We selected the same 11
attributes selected by this work, and added information from the mother’s first syphilis
test (either the VDRL exam or rapid test).

Our results demonstrated the gain in the performance of the models by adding new
information that is collected during the gestational period, improving all the analyzes
evaluated. It is worth noting that a large amount of missing data may have impacted
model learning, reducing the need for PMCP to improve the quality of data acquisition.

Finally, it is important to understand that this work does not aim to replace the
models presented in Teixeira et al. [1], but that together, they can more positively assist
healthcare professionals in decision-making. As future work, we intend to apply
different techniques to deal with missing data, and propose a tool that integrates the
models presented in this work.
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