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Abstract9

Hypothyroidism is a common condition of thyroid hormone insufficiency, and10

there is growing evidence of its link with additional diseases. It remains unclear11

whether these associations share a common genetic architecture. To address this gap,12

by leveraging summary-level genetic data from the UK Biobank of hypothyroidism13

and the FinnGen study of three complex diseases (sarcoidosis, chronic sinusitis, and14

interstitial lung disease (ILD) endpoints), we evaluated their shared genetic etiology.15

A significant genetic correlation was found between hypothyroidism and the three16

diseases. Cross-trait analyses utilizing the MTAG and CPASSOC models revealed 12,17

2, and 12 shared loci between hypothyroidism and chronic sinusitis, ILD endpoints,18

and sarcoidosis, respectively. The SNP heritability enrichment analysis across 3719

tissues and 136 cell types at the single-cell level identified candidate tissues and cell20

types that were shared by the diseases. Interestingly, we found a positive genetic21

relationship between these four diseases and central memory CD4+ T cells in the22

blood, supported by strong colocalization evidence (posterior probability >0.9).23

Mendelian randomization and colocalization analysis showed a link between24

hypothyroidism and sarcoidosis with two genes (DOCK6 and CD226) in the blood.25

Furthermore, among the hypothyroidism-driven plasma proteins, RIPK2 was26

identified as a potentially actionable mediator of hypothyroidism's effect on ILD27

endpoints. Overall, our findings contribute to improving our understanding of the28

molecular basis of these diseases' intricate relationships, as well as providing insights29

toward disease prevention and comorbidity management.30
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Introduction34

Hypothyroidism is a disorder caused by inadequate synthesis, secretion, or35

biological effects of thyroid-stimulating hormone (TSH) [1]. TSH exhibits clear36

polygenicity based on all 42 significant associations collected from a recent37

large-scale genome-wide association study (GWAS), which accounted for 33% of the38

genetic diversity in TSH levels, despite the heritability of TSH levels being estimated39

at 65% [2]. In addition to genetic determinants, intrinsic factors (eg., age and gender)40

and environmental risk factors, such as smoking and BMI, have been shown to41

influence thyroid function. For example, women are more likely to be affected by42

hypothyroidism than men, and the prevalence of hypothyroidism in women43

significantly climbs to 7% in people aged 85-89 years [3–5]. However, age, gender,44

smoking, body mass index, thyroid peroxidase antibody levels, and alcohol usage45

only explain around 7% of TSH and 5% of free thyroxine variation [6, 7]. In addition46

to determining what factors are responsible for the pathophysiology of47

hypothyroidism, the consequences of hypothyroidism for complicated diseases are48

gaining attention. Among older patients (aged over 65 years), a large-scale49

case-control study found that a history of hypothyroidism increased the likelihood of50

being diagnosed with dementia [5]. Clinical observation studies showed that51

hypothyroidism was associated with sarcoidosis and chronic rhinitis [8, 9].52

Furthermore, studies of two common interstitial lung diseases (ILD), idiopathic53

pulmonary fibrosis and fibrosing hypersensitivity pneumonitis, also suggested that the54

presence of hypothyroidism increased mortality [10, 11]. However, it remains unclear55

whether these relationships arise by chance or have a causal connection. As is well56

known, observational studies are susceptible to unmeasured confounding bias, which57

restricts the ability to draw causal findings. One solution is to use Mendelian58

randomization (MR) studies, which use genetic polymorphisms as a tool for causal59

inference, to yield unconfounded estimates in an observational situation even in the60
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face of unmeasured confounding [12]. Furthermore, GWASs have been conducted for61

hypothyroidism and other diseases. However, their shared genomic architecture is62

largely unexplored. Undoubtedly, figuring out their shared genetic architecture might63

help us better understand the complicated molecular pathways that underpin64

hypothyroidism and other complex diseases.65

To address such a gap, we performed a large-scale genome-wide cross-trait66

analysis to assess the genetic correlations, causal links, and shared genetic67

components between hypothyroidism and three complex diseases, which gave insights68

into their comorbidity.69

Material and methods70

GWAS data source71

Summary-level data for the associations of hypothyroidism-associated SNPs72

were derived from the MRC-IEU Consortium (access id: ukb-b-4226), which73

involved 9,674 cases and 453,336 controls [13]. Summary-level data for interstitial74

lung disease endpoints (4,572 cases and 407,609 controls), sarcoidosis (4,399 cases75

and 405,620), chronic sinusitis (17,987 cases and 308,457 controls) were obtained76

from FinnGen study (R10 release) [14]. Summary statistics for 4,907 plasma proteins77

in 35,559 Icelanders were obtained from the Collaborative Analysis of Diagnostic78

Criteria in Europe project (deCODE) [15]. Summary data for 14 CD4+79

memory-related T cells were retrieved from a sample of 3,757 Sardinians [16]. All80

cis-eQTL used in the present study were collected from both GTEx and the eQTLGen81

Consortium [17, 18]. The UCSC tool liftOver was used to coordinate the genomic82

position of SNPs in the GWAS.83

Heritability and overall genetic correlation analysis84

The 1000 Genomes project calculated linkage disequilibrium (LD) scores for85

approximately 1.2 million common SNPs in the HapMap3 reference panel.86

Single-trait SNP heritability for hypothyroidism and three other complex diseases was87

estimated using stratified linkage disequilibrium score regression (SLDSC) with the88

baseline-LD model [19, 20]. SNP heritability estimates were transformed to the89

liability scale based on the observed sample prevalence and population prevalence,90

https://gwas.mrcieu.ac.uk/datasets/ukb-b-4226/


4

assuming population prevalence for hypothyroidism, ILD endpoints, sarcoidosis, and91

chronic sinusitis were 0.046, 0.0003, 0.000145, and 0.08, respectively [21–24].92

Meanwhile, a pair-wise genetic correlation analysis was conducted using LDSC93

without restricting the intercept [25]. Sensitivity analyses have been carried out using94

LDSC with the single-trait heritability intercept restricted. Because there was no95

sample overlap in the MRC-IEU Consortium and FinnGen studies, we set all96

single-trait intercepts to 1 and all cross-trait intercepts to 0. A p-value of 0.05 was97

used to indicate statistical significance.98

Compared to LDSC, a genetic covariance analyzer (GNOVA) generates higher99

estimation accuracy for genetic correlations and a more powerful statistical inference100

[26]. As a result, GNOVAwas used to evaluate the SNP-based heritability and genetic101

association between hypothyroidism and the other three complex diseases, with102

default settings. In short, GNOVA calculates genetic covariance using all genetic103

variants shared by two GWAS summary statistics. Calculations were performed using104

the 1000 Genomes Project's European population-derived reference data and default105

parameters. In addition, sample overlap correction between two independent datasets106

of GWAS summary data was statistically determined.107

Local genetic correlation analysis108

To determine whether regions of the genome contribute to diseases, ρ-HESS109

(heritability estimation from summary statistics) was employed with the default110

setting to estimate pair-wise local genetic correlation [26, 27]. In brief, this approach111

divides the genome into 1,703 predefined 1.5 Mb LD-independent regions and112

properly evaluates genetic association within each region. Statistical significance was113

determined at a Bonferroni-corrected p-value threshold of 0.05/1,703, whereas114

suggestive significance was defined as p<0.05.115

Cross-trait GWAS meta-analysis116

Given the probability of a significant connection between hypothyroidism and117

the other three complicated diseases, we utilized cross-trait GWAS meta-analysis to118

identify the risk SNPs involved. We used two complementary cross-trait GWAS119

meta-analysis methods: MTAG (multitrait analysis of GWAS) and CPASSOC (cross120
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phenotype association) [27, 28]. MTAG was a multi-trait genome-wide analysis121

strategy that increased statistical power when compared to traditional single-trait122

GWAS analyses. The upper bound for the false discovery rate ("maxFDR") was123

determined for evaluating the assumptions on the equal variance-covariance of shared124

SNP impact sizes that underpin the diseases [29]. CPASSOC combines GWAS125

summary statistics from several correlated characteristics to discover variants126

associated with at least one trait while correcting for population structure or cryptic127

relatedness, and so served as a sensitivity study to determine the divergence from128

MTAG's assumption. The analysis used Shet, a test statistic given by CPASSOC that129

allows for heterogeneous effects of a characteristic across multiple study designs.130

Independent SNPs that were genome-wide significant (p<5e-08) in cross-trait131

meta-analyses (e.g. hypothyroidism-sarcoidosis) using both MTAG and CPASSOC,132

but not identified in the original single-trait GWAS (e.g. hypothyroidism or133

sarcoidosis) were prioritized, as identified by LD clumping (parameters: --clump-p1134

5e-8 --clump-p2 1e-5 --clump-r2 0.2 --clump-kb 1000) in PLINK [30]. Novel SNPs135

were classified as shared SNPs not driven by a single trait or in LD with index SNPs136

discovered in single-trait GWASs (LD r2 < 0.2). The Ensembl Variant Effect Predictor137

(VEP) was utilized to provide detailed functional annotation of the identified variants138

[31].139

Summary data-based Mendelian randomization analysis140

Using version 1.03 of the SMR software tool [31], we conducted an analysis141

using summary data from GWAS of four diseases and eQTL studies from GTEx142

(blood, lung, spleen, and small intestine) or eQTLgene (blood) to investigate the143

relationship between gene expression and four diseases. A trait-wise144

Bonferroni-corrected SMR p-value<0.05/number of examined genes indicated145

significant gene expression due to causation. Heterogeneity in dependent instruments146

(HEIDI) tests were used to determine whether the observed connections were147

influenced by linkage effects. A PHEIDI score of less than 0.05 suggests that the148

observed relationships are the result of independent genetic variants in LD.149

Colocalization analysis and Bayesian fine‑mapping analysis150
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Colocalization analysis was performed to verify the shared genetic variants151

between traits using the "colco.abf" function from the coloc R package, as previously152

described [32, 33]. This method uses a Bayesian algorithm to compute posterior153

probabilities for five mutually incompatible hypotheses on the sharing of causal154

variants in a genomic region. Posterior probabilities (PH4) greater than 0.8 were155

considered to be co-localized [32]. Meanwhile, we used SuSiE (v.0.11.42)156

("susie_rss" function of the susieR R package) to identify a 95%-credible list of SNPs157

for each independent shared genetic variant within 500-kb [34].158

Tissue enrichment analysis159

To identify the tissues most related to clinical diseases, we scanned the GTEx160

tissue (v8) enrichment analysis utilizing LDSC and multimarker analysis of genomic161

annotation (MAGMA), as described by Bryois and others [35]. In brief, using the162

GTEx dataset, we employed the pre-computed median expression across subjects and163

excluded tissues that were not sampled in at least 100 individuals, non-natural tissues,164

and testis tissues. Following that, the expression of tissues by organ (with the165

exception of brain tissues) was averaged, yielding gene expression profiles for 37166

tissues, with the 10% most specific genes in each tissue being used for the subsequent167

tissue enrichment studies. For LDSC, SNPs from 100-kb regions surrounding the 10%168

most specific genes in each tissue were included in the baseline model independently169

for each tissue, and the coefficient z-score p-value was chosen as a measure of the cell170

type's associations with the traits. For MAGMA, gene-level association statistics were171

computed using a window of 35-kb upstream to 10-kb downstream of gene172

coordinates. The European reference panel from phase 3 of the 1000 Genomes Project173

was utilized as the reference population. For all traits, we utilized MAGMA to174

determine whether the 10% most specific gene in each tissue was linked to gene-level175

genetic associations with the trait. Across all tissues per trait, we set the significance176

threshold for both LDSC and MAGMA at a 5% false discovery rate (FDR).177

Cell-type enrichment analyses using scRNA-seq datasets178

To identify cell types underlying complex traits, the scRNA-seq data from four179

tissues (whole blood [36], spleen [37], small intestinal [38], and lung [39]) and GWAS180
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summary statistics of four diseases we studied were integrated using three different181

genetic prioritization models: LDSC applied to specifically expressed genes182

(LDSC-SEG), MAGMA, and single-cell disease relevance score (scDRS) [40–42].183

The first two methods were implemented using the CELLECT snakemake workflow184

[43]. In brief, the CELLEX method was used for calculating a single ES estimate185

(ESm) score for each subpopulation in each cell type. Annotations were constructed186

using 1000 Genomes Project SNPs, as in the default S-LDSC baseline model [44].187

The Hapmap3 SNPs and the excluded major histocompatibility complex (MHC)188

region were utilized to calculate LD scores. Following that, LDSC-SEG and189

MAGMA regression analyses were conducted. Meanwhile, scDRS, which integrates190

gene expression patterns from scRNA-seq with polygenic disease information from191

GWASs, was used to discover the cell subpopulations driving GWAS enrichments.192

Putative disease gene sets were identified from the top 1,000 MAGMA genes193

weighted by their Z-scores. The normalized disease scores were generated in scDRS194

by the CLI with "scdrs compute-score" using a covariate matrix that included assay,195

gender, age, ethnicity, and the time of cold storage (if available). For multiple196

hypothesis testing, p-values were FDR corrected using the Benjamini-Hochberg197

methods across all tissues and diseases.198

Mendelian randomization and mediation analysis199

Two-sample MR analysis was used to infer the probable causality effect, using200

the R package "TwoSampleMR" V.0.5.6 and CAUSE, as previously reported [33]. In201

brief, the genome-wide significant (p<5e-08) SNPs located outside the MHC region202

(chromosome 6: 28,477,797-33,448,354 (GRCh37)) were first extracted. Independent203

SNPs (r2 < 0.001 and clump window>10,000 kb) were used as instrumental variables204

(IVs) in MR analysis through LD based on the 1000 Genomes European reference205

panel. Our analysis focused on cis-pQTLs, located within a 500-kb area upstream and206

downstream of the gene body, to find plasma proteins related to diseases. If two or207

more SNPs were available, the inverse variance weighted (IVW) approach was208

employed as the primary analysis, and if only one IV was available, the Wald ratio209

was used. Additionally, pleiotropy was assessed using MR-Egger's intercept, and210
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instrument heterogeneity was estimated using the Cochran Q test and I2 statistics with211

the "Isq()" method. Leave-one-out analysis was conducted to determine whether the212

observed correlation was caused by any single IV. To rule out any pleiotropic effects,213

we evaluated each selected instrument SNP in Open Targets Genetics214

(https://genetics.opentargets.org/) databases for previously reported associations.215

Associations with p< 5e-08 were deemed statistically significant. To account for216

multiple testings, we utilized Benjamini-Hochberg correction and a significance217

criterion of FDR < 0.05 to evaluate statistical significance. Furthermore, the CAUSE218

model, which accounts for correlated and uncorrelated horizontal pleiotropic effects219

through a multivariate linear model adjusted by a joint distribution of instrumental220

SNPs, was used to avoid more false positives caused by correlated horizontal221

pleiotropy than previous methods [45]. To estimate the causal mediation effects222

(βmediated), network MR with a product of coefficients method was employed, as223

described by Yoshiji and others [46]. In brief, we first estimated the effect of protein224

levels on hypothyroidism (βprotein-to-hypothyroidism) and the effect of hypothyroidism on225

chronic sinusitis (βhypothyroidism-to-chronic sinusitis). After that, we multiplied these values226

(βmediated = βprotein-to-hypothyroidism×βhypothyroidism-to-chronic sinusitis) and divided βmediated by227

βprotein-to-chronic sinusitis to estimate the proportion mediated.228

Results229

Hypothyroidism shows a significant genetic correlation with complex diseases230

Bivariate LDSC was used to evaluate the genetic association (without a231

constrained intercept) between hypothyroidism and the three complex diseases232

(Figure 1A). Using unconstrained LDSC, three complex diseases were identified as233

having a substantial genetic correlation with hypothyroidism (ILD endpoints,234

Rg=0.2425, p=0.0063; sarcoidosis, Rg=0.2937, p=2.05e-05; chronic sinusitis,235

Rg=0.1776, p=0.0004). The liability-scale SNP heritability estimates for236

hypothyroidism, ILD endpoints, sarcoidosis, and chronic sinusitis were 0.0469,237

0.0042, 0.0126, and 0.0241, respectively. The computed intercept of genetic238

covariance ranged from 0.018 to 0.040, indicating a slight sample overlap between239

hypothyroidism and the selected complex diseases. Given the limited sample overlap240
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between hypothyroidism and the three complex diseases, we further confined the241

intercepts of genetic covariance estimates to 0, allowing LDSC to provide better242

power with slightly lower standard errors (SE) (Supplementary Table S1). As a243

result, the estimated genetic association was marginally reduced while remaining244

significant. GNOVA and ρ-HESS analyses revealed a strong genetic link between245

hypothyroidism and three complex diseases (Figure 1A).246

Given the significant global genetic association, we investigated whether distinct247

genomic regions conferred local genetic correlation at genomic regions with GWAS248

sites relevant to each trait. A total of 13 suggestively significant region pairs were249

discovered (uncorrected p<0.05, ρ-HESS, Supplementary Table S2) . There are 4250

regions for hypothyroidism and chronic sinusitis, 6 regions for hypothyroidism and251

sarcoidosis, and 3 regions for hypothyroidism and ILD endpoints. The average local252

genetic association was nearly the same in regions with hypothyroidism-specific loci253

or the three complex disease-specific loci (Supplementary Figure S1). No other254

common region with a substantial local genetic association was discovered255

(Supplementary Figure S1). Interestingly, it was found that the correlation at256

hypothyroidism-specific regions (local Rg=0.2, SE=0.058) is significantly greater257

than sarcoidosis-specific (local Rghypothyroidism=0.2, SEhypothyroidism=0.058 versus local258

Rgsarcoidosis=0.19, SEsarcoidosis=0.61) as well as chronic sinusitis-specific loci (local259

Rghypothyroidism=0.12, SEhypothyroidism=0.041 versus local Rgchronic sinusitis=-0.16, SEchronic260

sinusitis=0.15), indicating that loci that increase hypothyroidism tend to consistently261

increase the risk of sarcoidosis and chronic sinusitis (Figure 1B). Overall, these262

results suggest hypothyroidism and complex diseases are likely linked due to the263

sharing of genetic variants across the entire genome rather than in specific genomic264

regions.265

Hypothyroidism has a causal effect on sarcoidosis and chronic sinusitis266

Bidirectional MR was used to investigate the probable causative effect and267

whether the shared genetic basis of hypothyroidism and complex diseases supported268

pleiotropy. Genetically predicted hypothyroidism was linked to increased risk of three269

complex diseases (IVW beta=3.49 for ILD endpoints, SE=0.68, p-value=2.63e-07;270



10

IVW beta=4.26 for sarcoidosis, SE=0.87, p-value=8.83e-07; IVW beta=1.78 for271

chronic sinusitis, SE=0.47, p-value=1.87e-04) (Supplementary Table S3). The272

MR-Egger intercept test revealed no directional pleiotropy, supporting the validity of273

the findings. The positive relationships between hypothyroidism and these three274

diseases were not driven by outliers, as confirmed by leave-one analysis. In the275

reverse direction, no significant association was found between these three complex276

diseases and the risk of hypothyroidism ((odds ratio) OR=1.0026 for ILD endpoints,277

95% confidence interval (CI):0.998-1.0064, p-value=0.19; OR=1.0062 for sarcoidosis,278

95%CI: 0.99-1.012, p-value=0.061; OR=1.012 for chronic sinusitis, 95%CI:279

0.99-1.03, p-value=0.209). These findings are consistent across several MR280

approaches (Supplementary Table S3). To validate these results, the largest-to-date281

GWASs of hypothyroidism, involving 51,194 cases of hypothyroidism and 443,383282

controls from Finland and the UK Biobank study, were utilized to evaluate the283

causation between hypothyroidism and the other three diseases (Figure 1C and284

Supplementary Table S4) [46]. All of these causal associations between285

hypothyroidism and complex disease could be repeated (Figure 1C and286

Supplementary Table S4). However, the CAUSE model shows that, aside from ILD287

endpoints, only chronic sinusitis and sarcoidosis are genetically affected by288

hypothyroidism.289

Cross-trait meta-analysis and pleiotropic loci290

Given the considerable genetic link between hypothyroidism and three291

complex diseases, we performed a cross-trait meta-analysis to increase our capacity to292

uncover genetic SNPs shared across the traits. A total of 26 genome-wide significant293

SNPs (p<5e-08) were found in both MTAG and CPASSOC (Figure 2 and294

Supplementary Table S5). There were 12 loci related to hypothyroidism and chronic295

sinusitis; 2 loci associated with hypothyroidism and ILD endpoints; and 12 loci296

associated with hypothyroidism and sarcoidosis. Importantly, we identified two novel297

SNPs: one related to hypothyroidism and chronic sinusitis (rs174573, mapped gene:298

FADS2, Phypothyroidism=1.30e-07, Pchronic sinusitis=1.04e-07, PCPASSOC&MTAG<5e-08), and299

another with hypothyroidism and sarcoidosis (rs12806363, mapped gene: RPS6KA4,300
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Phypothyroidism=6.4e-08, Psarcoidosis=1.52e-06, PCPASSOC&MTAG<5e-08). The MTAG studies301

on hypothyroidism, sarcoidosis, chronic sinusitis, and interstitial lung disease yielded302

maxFDR values of 0.00044, 0.00825, 0.026, and 0.27, respectively. Notably, the303

MTAG results were highly comparable with those generated by CPASSOC, implying304

that the MTAG results are reliable and that bias in MTAG assumptions is unlikely to305

be significant. Among these 26 loci, 11 risk SNPs were consistently significant306

(p<0.05) when examined by ρ-HESS methods (Supplementary Table S2), and 16307

loci had colocalization probabilities (PH4) over 0.8, confirming that hypothyroidism308

and the selected three diseases share the same genetic variants (Supplementary Table309

S5). Finally, two (rs11066320 and rs3184504), one (rs653178), and four (rs12349571,310

rs11065784, rs11066320, and rs3184504) common loci between hypothyroidism and311

sarcoidosis, ILD endpoints, and chronic sinusitis, respectively, were verified by312

different approaches (PPA4>0.8, Supplementary Table S6). Interestingly, the two313

independent loci shared by hypothyroidism and sarcoidosis (rs11066320 and314

rs3184504) were also found in the cross-traits study of hypothyroidism and chronic315

sinusitis (Supplementary Table S5). Notably, rs653178, the common risk locus for316

hypothyroidism and ILD endpoints, is located on an intron of ATXN2, which also317

serves as a TF-binding site for XBP1, CREB3, BATF3, JDP2, FOS, ATF7, and JUN.318

In order to infer causative variants at each of the pleiotropic loci, a credible set of319

variants that were 95% probable were identified, based on posterior probability320

(Supplementary Table S7). In total, we discovered 147 candidate causative SNPs321

across all shared loci. Five pleiotropic SNPs (rs11066320, rs2847259, rs3184504,322

rs6679677, and rs7705526) also had posterior probabilities greater than 0.99. Overall,323

this credible set of variants offers targets for further experimental studies.324

SNP heritability enrichment at the tissue and cell type level325

To determine which tissues affect by genetics factors, we used the LDSC and326

MAGMAmethods to identify human tissues with enrichment for genetic associations327

using human GTEx (v8) resources. For these two approaches (LDSC and MAGMA),328

we evaluated whether the 10% most specific genes in each tissue had more genetic329

associations with each of the traits. After adjusting for the baseline model and330
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performing multiple corrections, we observed significant SNP heritability enrichment331

for hypothyroidism across four tissues (Figure 3A and Supplementary Table S8),332

with hypothyroidism having a greater enrichment in the spleen, small intestine, blood,333

and lung. Following multiple corrections, no significant enrichment was detected for334

sarcoidosis, chronic sinusitis, or ILD endpoints (Figure 3A and Supplementary335

Table S8).336

Given tissue heterogeneity, we used publicly available scRNA-seq datasets from337

four tissues: whole blood (50,115 cells), spleen (94,256 cells), small intestinal (36,359338

cells), and lung (71,752 cells), to assess the genetic association with cell type339

expression specificity for hypothyroidism and the other three diseases (Figure 3B and340

Supplementary Table S9). To robustly identify the tissues implied by these traits,341

three approaches (LDSC, MAGMA, and scDRS) were implemented, each with a342

different assumption and procedure. Specifically, scDRSs, an orthogonal approach to343

other methodologies, were utilized to detect GWAS trait enrichment at the single-cell344

level. This approach assesses not only the associations between cell types and GWAS345

traits but also the heterogeneity of the associations within cell types. Following the346

heritability enrichment analysis, we uncovered significant enrichment for347

hypothyroidism with sarcoidosis and chronic sinusitis in CD4 positive348

alpha-beta memory T cells, CD4 positive alpha-beta T cells, and CD8 positive349

alpha-beta T cells in blood, indicating that the polygenic risks associated with these350

three diseases were enriched in the cells responsible for adaptive immunity (Figure351

3B and Supplementary Table S9). Hypothyroidism was also found to share group 2352

innate lymphoid cells, group 3 innate lymphoid cells, CD4 positive alpha beta T cells,353

CD8 positive alpha beta T cell regulatory T cells, and T helper 17 cells in the lung354

with sarcoidosis and chronic sinusitis. Furthermore, the activated CD8+ alpha beta T355

cells in the spleen showed a greater heritability enrichment for hypothyroidism with356

sarcoidosis and chronic sinusitis, with significant heterogeneity. Interestingly, both357

hypothyroidism and sarcoidosis showed considerable heritability enrichment in T358

cells and dendritic cells in the small intestine (Figure 3C and Supplementary Table359

S9), shedding light on the biology of comorbidity via the same cell type.360
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Of note, the significant heritability does not necessarily indicate a causal361

relationship between cell types and diseases. To validate the causative influence of362

CD4 positive alpha-beta memory T cells in the blood associated with diseases (Figure363

3B), 14 CD4+ memory-related T cells from a cohort of 3,757 Sardinians were used in364

MR analysis (Supplementary Table S10-S11). After multiple corrections, 9 pairs of365

cell-disease associations were identified. Interestingly, it was found that central366

memory CD4+ T cell absolute count was significantly genetically associated with367

hypothyroidism (OR=1.008, 95%CI=1.0029-1.013; FDR=1.16e-02), ILD endpoints368

(OR=1.94, 95%CI=1.49-2.51; FDR=9.44e-06), sarcoidosis (OR=2.49,369

95%CI=1.92-3.25; FDR=1.41e-10), and chronic sinusitis (OR=1.51,370

95%CI=1.32-1.73; FDR=2.86e-08), respectively (Figure 3C and Supplementary371

Table S10-S11). Furthermore, colocalization analysis showed that central memory372

CD4+ T cell absolute count may share the same genetic variants with hypothyroidism373

(PH4=0.994), ILD endpoints (PH4=0.992), sarcoidosis (PH4=0.992), and chronic374

sinusitis (PH4=0.991) (Figure 3D). Altogether, these findings indicate that375

hypothyroidism appears to influence the link between central memory CD4+ T cell376

absolute count and sarcoidosis or chronic sinusitis.377

Identification of shared functional genes for hypothyroidism and complex378

diseases379

To infer causality and identify putative functional genes for hypothyroidism and380

complex diseases, we utilized GWAS summary data with small intestine, spleen, and381

lung eQTL summary data from GTEx, as well as whole blood eQTL summary data382

from eQTLGen and GTEx resources (v8) (Figure 4A and Supplementary Table383

S12). After multiple corrections (Bonferroni-corrected p<0.05), two substantial risk384

gene pairs (HLA-DPB2 and HLA-DQB1-AS1) in the small intestine were identified385

for hypothyroidism and related diseases. Hypothyroidism and sarcoidosis share two386

genes including AP003774.4 and HLA-DPB2 in the spleen. In addition, PPP1R18 in387

the lung is genetically shared by hypothyroidism and sarcoidosis (SMR adjusted388

p<0.05 and PHEIDI>0.05). Interestingly, some other common risk genes were389

discovered, although they were not statistically significant in both hypothyroidism390



14

and other diseases, they were significant in at least one of the diseases. For example,391

CUTALP, which is strongly associated with hypothyroidism, has also been linked to392

ILD endpoints and sarcoidosis in the small intestine, blood, and lungs. Similarly,393

DOCK6 was shared by hypothyroidism and three additional diseases of the small394

intestine and blood. To further validate these associations, colocalization analyses for395

the 48 common gene-tissues pairs were conducted using human GTEx resources (v7)396

(Figure 4B and Supplementary Table S13). DOCK6 and CD226 reveal substantial397

colocalization evidence with hypothyroidism and sarcoidosis in the blood.398

Interestingly, CCDC88B has significant colocalization evidence with hypothyroidism399

and sarcoidosis in blood as both share the same genetic variant, rs479777, one of the400

pleiotropic loci identified (Figure 3, Figure 4C, and Supplementary Table S13).401

However, no clear causation evidence has been established for the connection of402

CCDC88B with sarcoidosis (SMR p=6.84e-09, PHEIDI=6.85e-03). It is worth noting403

that CUTALP, which is generally related to the ILD endpoint and shows strong404

colocalization evidence with hypothyroidism, also showed medium colocalization405

evidence with the ILD endpoint in the small intestine, blood, and lung.406

Identification of shared functional plasma proteins for hypothyroidism and407

diseases408

Because plasma proteome is an abundant resource of potential drug targets for409

diseases, putative shared functional circulation proteins for hypothyroidism and410

complex diseases were identified using large-scale GWASs of 4,907 circulating411

proteins in 35,559 Icelanders (Figure 5A and Supplementary Table S14). Given that412

cis-pQTLs were anticipated to have a more direct and specific biological influence on413

the protein (relative to trans-pQTLs), MR studies with only cis-pQTLs as IVs and414

diseases as outcomes were carried out [47]. After filtering for heterogeneity (I2 < 50%415

for all), directional pleiotropy (PEgger intercept > 0.05), reverse causation (PSteiger test<0.05),416

and leave-one-out analysis, 34 causality proteins were observed (FDR<0.05) (Figure417

5A and Supplementary Table S15). Interestingly, AIF1 was found to be negatively418

associated with a decreased risk of hypothyroidism (OR[95%CI]=0.981[0.974, 0.988];419

p=1.65e-07) and chronic sinusitis (OR[95%CI]=0.655[0.550, 0.780]; p=2.00e-06),420
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despite a positive correlation with sarcoidosis (OR[95%CI]=10.33[7.40, 14.43];421

p=6.32e-43). To evaluate the indirect effect of proteins on chronic sinusitis via422

hypothyroidism, we performed a mediation analysis with effect estimates from423

two-step MR and the overall effect from primary MR. The mediation analysis424

revealed that AIF1 had a modest mediation effect on chronic sinusitis via425

hypothyroidism (7.83%). In addition to AIF1, no other proteins were identified to be426

statistically consistently associated with both hypothyroidism and complex diseases.427

However, at the nominal level, 19 protein-disease associations are shown (Figure 5B428

and Supplementary Table S15), and in particular, 12 pairs of associations (βprotein to429

diseases×βprotein to hypothyroidism>0) have shown a consistent direction of effect between430

hypothyroidism and three selected complex diseases (βhypothyroidism to diseases>0). For431

example, a genetic tendency to elevated ALDH2 was found to be substantially linked432

with an increased risk of hypothyroidism (OR[95%CI]=1.053[1.040, 1.066];433

p=5.26e-17), as well as an increased risk of ILD endpoints, sarcoidosis, and chronic434

sinusitis. Furthermore, higher genetically predicted levels of both ANTXR1435

(OR[95%CI]=0.316[0.128, 0.782]; p=0.0127) and NBL (OR[95%CI]=2.704[1.149,436

6.36]; p=0.022) were linked with decreased risk of ILD endpoints. Notably, only437

B3GALT6, which had >80% of the posterior probability of colocalization of the438

genetic association with hypothyroidism, was explained by the same genetic variant439

(rs67492154), whereas no strong colocalization evidence was found for other proteins440

with the corresponding diseases (Figure 5B and Supplementary Table S16).441

Identification of the causal effect of hypothyroidism-driven proteins on diseases442

Alternatively, plasma proteins may act as mediators for the effect of443

hypothyroidism on complex diseases, providing additional insight into underlying444

comorbidities. To accomplish this, we first estimate the causal effect of445

hypothyroidism on plasma protein levels in a two-sample MR analysis, with446

hypothyroidism as the exposure and 4,907 plasma protein levels as the outcomes447

(Figure 5C and Supplementary Table S17). The F-statistic, which measures the448

strength of the association between genetic variants and hypothyroidism, was 73.37,449

indicating no weak instrument bias. After filtering by heterogeneity test (I2<0.5) and450
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directional pleiotropy test (PEgger intercept>0.05), 1,315 proteins were estimated to be451

impacted by hypothyroidism (FDR<0.05). 207 proteins that failed leave-one-out452

analysis and 6 proteins with bidirectional effects were also removed from further453

investigation. As a result, a total of 1,102 protein levels, including RIPK2, were454

identified as hypothyroidism-driven proteins, with no apparent heterogeneity455

(I2 < 50%), directional pleiotropy (PEgger intercept > 0.05), or reverse causation (Figure456

5D and Supplementary Table S18). The weighted median, weighted mode, and457

MR-Egger slope methods all produced directionally consistent results with the IVW458

method for RIPK2 (Supplementary Table S18). Among these hypothyroidism-driven459

proteins, proteins that have a positive effect from hypothyroidism were significantly460

enriched in the toll-like receptor signaling pathway, chemokine signaling pathway,461

NOD-like receptor signaling pathway, and MAPK signaling pathway, while462

negatively affected proteins were negatively associated with histidine metabolism,463

tryptophan metabolism, and neurotrophin signaling pathway, indicating the imprint464

impact of hypothyroidism on the immune response (Figure 5E).465

We next used two-sample MR to assess the causative effects of the identified466

hypothyroidism-driven proteins on three complex diseases. We again employed467

cis-pQTLs for these proteins as IVs, and GWASs from three diseases as outcome468

variables. Following the cis-pQTL search and data harmonization, 130 proteins were469

analyzed in MR to assess their estimated causal effect on three diseases. After470

multiple testing corrections (FDR<0.05), no significant association was identified471

between hypothyroidism-driven proteins and the three diseases. However, at the472

nominal significance level, 24 protein-disease association pairs were identified473

(Figure 5F). Particularly, 13 pairs of associations (βprotein to diseases×βhypothyroidism to protein>0)474

reveal a consistent direction of hypothyroidism's effect on diseases (βhypothyroidism to475

diseases>0). For example, higher genetically predicted RIPK2 levels476

(OR[95%CI]=2.88[1.55, 5.38]; p=8.5e-04) were related to an increased risk of ILD477

endpoints (Figure 5F). To check out the premise of a lack of directional pleiotropy,478

which could reintroduce confounding, we used the Open Target Genetics479

(https://genetics.opentargets.org/) databases to determine whether the RIPK2480
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cis-pQTLs (rs160438) were related to any traits. The deCODE study's lead cis-pQTL481

for RIPK2 (rs160438) did not disclose any additional relationship at the genome-wide482

significance threshold of p<5e-08. Colocalization analysis revealed that only RIPK2483

had medium colocalization with the diseases (Figure 5F and Supplementary Table484

S16). To better understand the origin of RIPK2 in the lung at the scRNA-seq level, we485

evaluated single-cell RIPK2 expression in human lung tissues from six healthy people486

and five systemic sclerosis-associated interstitial lung disease (SSC-ILD) patients, as487

described previously [48, 49]. RIPK2 was mainly expressed in monocytes,488

macrophages, and monocyte-derived macrophages (monocyte-derived Mph) (Figure489

5G). Overall, these findings suggested that RIPK2 may be a potential mediator of the490

effect of hypothyroidism on ILD endpoints.491

Discussion492

In this study, we provide evidence of causality and shared genetic etiology493

between hypothyroidism and three complex diseases. Our findings provide additional494

insight into their comorbidity and may lead to a better understanding of their495

pathophysiology and the development of treatments.496

Both GONVA and LDSC analyses in our study revealed a genetic correlation497

between hypothyroidism and three complex diseases, providing genetic evidence of a498

significant positive genetic correlation and supporting the hypothesis that genetic499

factors play an important role in their comorbidity. Although there was a significant500

overall genetic correlation between hypothyroidism and three complex diseases, no501

shared region was discovered for their local genetic correlation, implying that these502

associations are most likely correlated due to genetic variants shared across the entire503

genome rather than in specific genomic regions. Importantly, to our knowledge, our504

study showed for the first time that hypothyroidism increases the risk of sarcoidosis505

and chronic sinusitis. Despite the fact that hypothyroidism was found to have a506

statistical significance on ILD endpoints using IVW methods, no significant evidence507

was revealed when using the CAUSE model, and their causality association should be508

interpreted with caution because we cannot rule out the possibility that this positive509

association was caused by correlated pleiotropy.510
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Notably, we discovered several shared genetic loci between hypothyroidism and511

three complex diseases using cross-trait meta-analysis and colocalization analysis.512

Specifically, by using distinct methods (MTAG and CPASSOC), we may minimize513

potential bias due to sample overlap. Furthermore, consistently significant loci were514

identified in both analyses, increasing the reliability of our findings. Notably,515

cross-trait GWAS meta-analyses discovered two novel SNPs shared between516

hypothyroidism and sarcoidosis (rs12806363) and chronic sinusitis (rs174573),517

implying that these SNPs are likely engaged in regulating similar pathways shared by518

their comorbidities. rs12806363 is an intron variant in RPS6KA4, which encodes a519

member of the RSK (ribosomal S6 kinase) family of serine/threonine kinases,520

whereas rs174573 is a missense variant in FADS2, a member of the fatty acid521

desaturase gene family that is involved in alpha-linolenic acid metabolism and522

arachidonate biosynthesis III. A study found higher expression of FADS2 in CD4+523

cells in asthmatic patients [50]. Additionally, long-chain polyunsaturated fatty acids524

produced by FADS2 have anti-inflammatory effects and may regulate immunological525

function [51, 52]. CRISPR-based technology is required to functionally confirm and526

define the regulatory effects of genetic variants underlying diseases.527

Furthermore, results from heritability enrichment analysis indicate that the528

putative tissues and cell types may be involved in the shared etiology. It was529

discovered that GWAS findings for hypothyroidism were more prevalent in the spleen,530

blood, small intestine, and lungs. The detailed cell types across these four tissues were531

subsequently utilized in the enrichment analysis to identify shared cell types. Central532

memory CD4+ T cells in the blood were found to be genetically related to these four533

diseases, with substantial colocalization evidence (posterior probability>0.9).534

Consistent with our findings, a recent study also showed that the proportions of Th1535

cell-like effector memory T cells and CD4+ tissue-resident memory T cells were536

significantly increased in nasal polyps from patients with uncontrolled severe chronic537

rhinosinusitis with nasal polyps (CRSwNP) compared to inferior turbinates from 4538

healthy subjects [53], further supporting a role that cannot be ignored in central539

memory CD4+ T cells on the diseases. Overall, enriched tissues supply additional540
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evidence for disease comorbidity. It should be noted that enrichment analysis results541

do not represent causality; therefore, in addition to blood, further analysis should be542

used to evaluate the causative effect of cell types in tissues on diseases when GWASs543

of cell types in these tissues are available.544

In addition to cross-trait meta-analysis, we evaluated eQTL and pQTL data to545

investigate whether their association might be explained by shared risk genes or546

proteins. Using SMR, HEIDI, and colocalization analysis, we discovered that CD226547

and DOCK6 may act as an association between hypothyroidism and sarcoidosis.548

CD226, a member of the immunoglobulin superfamily, is a functional protein549

originally produced on natural killer and T cells [54]. A recent study has reported that550

CD226 expression in T cells from sarcoidosis [55]. Furthermore, it was proposed that551

CD4 T cells moving to the lungs via CXCR3 could be activated by CD226,552

potentially contributing to the pathogenesis of sarcoidosis. DOCK6, a member of the553

DOCK-C subfamily that displays GEF activity for both Rac1 and CDC42 through its554

Dock Homology Region-2 (DHR-2) domain, was also shared by hypothyroidism and555

sarcoidosis, as validated by two distinct datasets (GTEx and eQTLgene) [56]. Recent556

research indicates that DOCK6 is linked to various diseases, including cancers like557

gastric cancer and acute myeloid leukemia, and functions as an oncogene [57–60].558

However, as far as we know, the biological association between DOCK6 and559

sarcoidosis and hypothyroidism is largely unknown; more research is needed to560

understand the mechanisms of DOCK6 in both of these diseases. Meanwhile, we561

also conducted a systematic investigation into the causes and consequences of plasma562

proteins associated with hypothyroidism, as well as their relationship to all three563

diseases we have studied (Figure 5H). Interestingly, we showed that AIF1 may act as564

a mediator in the association between hypothyroidism and chronic sinusitis, despite565

the fact that no strong colocalization analysis was detected in either trait. We explored566

the causal influence of hypothyroidism-driven proteins on the three analyzed diseases567

while maintaining the cause direction of hypothyroidism in account. Interestingly,568

hypothyroidism was found to affect about 1,102 protein levels, indicating that569

hypothyroidism has a substantial effect on plasma protein levels. Although no570
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statistically significant association was observed between hypothyroidism-driven571

proteins and the three studied diseases, RIPK2 was identified as a potential mediator572

of hypothyroidism's effect on ILD endpoints, as indicated by colocalization analysis573

with medium evidence. Additional research employing cis-pQTL of RIPK2 from574

diverse cohorts is required to corroborate these findings. Furthermore, despite the fact575

that no significant relationship was found in our study, it provides insight for further576

studying the mechanisms underlying the association between hypothyroidism and577

other diseases employing hypothyroidism-driven proteins in the future.578

We also note that our study has severe limitations. First, the GWAS data for579

hypothyroidism and the three complex diseases utilized in this study were sourced580

from the European population; therefore, the results may not be applicable to other581

ancestries. Second, the availability of summary-level GWAS rather than individual582

data for four diseases limits our ability to analyze sex and age-specific genetic effects.583

Third, while our findings show a genetic link and overlap between hypothyroidism,584

sarcoidosis, and chronic sinusitis, the underlying biological mechanisms remain585

unexplained. For example, the mechanism of central memory CD4+ T cell absolute586

count and causal genes (DOCK6 and CD226) involved in disease crosstalk remain587

largely unknown; therefore, functional experimental validation of the enriched tissues588

and cells is required. Finally, the study's GWAS sample size for hypothyroidism was589

not the largest. Mathieu and colleagues recently conducted a GWAS meta-analysis of590

hypothyroidism that included 51,194 cases and 443,383 controls, and 139 risk loci591

from the UK Biobank and FinnGen studies were discovered [61]. However, due to592

differences in research design, we employed hypothyroidism GWASs from the UK593

Biobank in our study, which minimizes the possibility of our discovery being false594

positive.595

In conclusion, by leveraging GWAS summary data, we unearthed significant596

genetic correlations and uncovered the shared loci between hypothyroidism and three597

complex diseases. The shared genes, proteins, and cell types that are associated with598

their comorbidity were also identified. Furthermore, MR analysis revealed a causal599

effect of hypothyroidism on chronic sinusitis and sarcoidosis. Overall, these findings600
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shed light on an understanding of disease pathogenesis and point to possible therapy601

targets.602
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803

Figure Legend804

Figure 1. Genetic correlation and causality between hypothyroidism and three805

complex diseases. (A) The heritability, genetic covariance, and global genetic806

association of hypothyroidism with three complex diseases. (B) The average local807

genetic association between hypothyroidism and three complex diseases. The error808

bars show the 95% confidence intervals of the estimates. (C) Summary of809

bidirectional MR analyses of hypothyroidism and three complex diseases. The810
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abbreviation IVW refers to inverse variance weighting. The dot represents -log10811

p-values in MR analysis. The red dotted line represents the -log10(0.05). LDSC,812

linkage disequilibrium score regression; GNOVA, genetic covariance analyzer.813

814

Figure 2. Manhattan plot for genome-wide association study using cross-trait815

GWAS meta-analysis. The x-axis displays the number of autosomes, while the y-axis816

displays the -log10 p-values for statistical significance derived from the CPASSOC817

model. The dots represent SNPs. The red dotted line represents the genome-wide818

significance threshold (p<5e-08). Pleiotropic loci that are significant in single-trait819

GWASs, including MTAG and CPASSOC, were indicated by text.820

821

Figure 3. Tissue/cell type-specific enrichment of SNP heritability for four822

diseases. (A) The heritability enrichment of tissues for diseases using LDSC and823

MAGMA. The x-axis displays -log10 p-values for each individual test. (B) The824

heritability enrichment of cell types for four diseases using LDSC, MAGMA, and825

scDRS. An expression specificity matrix created with CELLEX was used to perform826

LDSC-SEG and MAGMA regression analyses. For scDRS analysis, a co-variable827

matrix containing assay, gender, age, ethnicity, and time of cold storage (only for the828

spleen scRNA dataset) was used. Dot colors and point size indicate considerable cell829

type-disease associations. scDRS: single-cell disease relevance score. FDR indicates830

that the p-value was adjusted using the Benjamini-Hochberg method for all cell831

types across diseases. (C) UMAP embeddings of cell types in the small intestinal with832

normalized scDRS scores for the four diseases. Pink represents cells that are enriched833

for the aforementioned disease, while gray implies non-relevant cells. (D) The causal834

association between the listed cell types and four diseases. The dot size shows -log10835

p-values from MR analysis using the IVW approach. (E) Colocalization analyses of836

cell type QTL for central memory CD4+ T cell absolute count in four diseases. We837

utilized colocalization to investigate whether the QTL for central memory CD4+ T838

cell absolute count shared the same causative variant as four other diseases. Each dot839

indicates a single nucleotide polymorphism, while colors indicate linkage840
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disequilibrium (LD; r2) with the most likely causative variant, rs3184504. The841

posterior probability (PH4) was calculated using the "colco.abf" function from the842

coloc R package. FDR, false discovery rate.843

844

Figure 4. Prioritized genes related to four diseases. (A) SMR prioritized genes845

linked to four diseases. To study the association between gene expression and four846

diseases, cis-eQTL from GTEx v8 (blood, lung, spleen, and small intestine) or847

eQTLgene (blood) were used. Prioritized genes were statistically related to at least848

one disease (Bonferroni-corrected p<0.05), and PHEIDI scores < 0.05 were used for849

plotting. The point size and color show the size of associations between genes and850

diseases. (B) Colocalization analysis of potential genes associated with four diseases.851

We used colocalization to determine whether the putatively shared genes identified in852

(A) could share the same causative variants with diseases. Colocalization analyses853

were performed using cis-eQTL from GTEx v7 (blood, lung, spleen, and small854

intestine) or eQTLgene (blood). (C) Colocalization analysis of the CCDC88B855

cis-eQTL with hypothyroidism and sarcoidosis. Each dot indicates a single nucleotide856

polymorphism, while colors indicate linkage disequilibrium (LD; r2) with the most857

likely causative variant, rs479777. The posterior probability (PH4) was calculated858

using the "colco.abf" function in coloc R package.859

860

Figure 5. Prioritized plasma proteins associated with four diseases. (A) Volcano861

graphic depicting the effect of plasma protein on four diseases based on MR analyses.862

Color dots indicate significant relationships (uncorrected p<0.05). The labeled dot863

represents a significant association that passes multiple test corrections (FDR< 0.05).864

Only proteins with no significant heterogeneity (I2 < 50%), directional pleiotropy865

(PEgger intercept > 0.05), reverse causation, and passing leave-one-out analysis were866

presented in the plotting. (B) Shared the associations between 29 causal plasma867

proteins (statistically significant for at least one disease) and 4 diseases based on MR868

analysis. (Left) MR analysis reveals the causative effect of plasma proteins on four869

diseases; (right) colocalization analyses of cis-pQTL with four diseases. (C) Volcano870
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plot depicting the effect of hypothyroidism on plasma protein based on MR analyses.871

Color dots indicate significant relationships after multiple testing corrections872

(FDR<0.05). Proteins were plotted with no significant heterogeneity (I2 < 50%),873

directional pleiotropy (PEgger intercept > 0.05), reverse causation, leave-one-out analysis,874

and multiple testing adjustments (FDR<0.05). (D) An MR scatter-plot depicting the875

effect of hypothyroidism on plasma RIPK2 levels. Using the inverse variance876

weighted method, an increase in hypothyroidism predicted by one standard deviation877

was linked to higher levels of RIPK2 (β=0.62, 95%CI=1.20-2.89, p=0.0052). (E)878

Enrichment analysis of biological functions for hypothyroidism-influenced proteins,879

both positively and negatively. (F) Shared the associations between 23880

hypothyroidism-driven plasma proteins and diseases identified by MR analysis. (Left)881

Use of MR analysis to determine the causative influence of hypothyroidism-driven882

plasma proteins on diseases; (right) Colocalization analyses of cis-pQTL and four883

diseases. (G) Single-cell resolution analysis of RIPK2 expression in lung cell types884

from six healthy individuals and five systemic sclerosis-associated interstitial lung885

disease (SSC-ILD) patients. (Up) Sixteen annotated lung cell types. (Down) RIPK2886

expression patterns in six healthy individuals and five SSC-ILD patients. UMAP,887

Uniform Manifold Approximation and Projection. EC, endothelial cell; AT, Alveolar888

Type. (H) A schematic illustration of the causes and consequences of proteins889

associated with hypothyroidism, as well as their relationship to the three diseases890

investigated. Figures generated with BioRender (https://biorender.com/).891

892

Supplementary Figure893

Figure S1. Local genetic correlations between hypothyroidism and complex894

diseases revealed by ρ-HESS (Heritability Estimation from Summary Statistics).895

Local genetic correlations between hypothyroidism and chronic sinusitis (A), ILD896

endpoints (B), and sarcoidosis (C), respectively. Significant local genetic correlation897

estimates are highlighted in red and blue for even and odd chromosomes, respectively.898

899

Supplementary Table900
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Supplementary Table S1. Genetic correlations between hypothyroidism and complex901

diseases.902

Supplementary Table S2. Summary of localized genetic correlations between903

hypothyroidism and complex diseases.904

Supplementary Table S3. Summary of Mendelian randomization results between905

hypothyroidism and complex diseases using GWASs of hypothyroidism from906

MRC-IEU Consortium.907

Supplementary Table S4. Summary of Mendelian randomization replication results908

between hypothyroidism and complex diseases using GWASs meta-analysis of909

hypothyroidism.910

Supplementary Table S5. Genome-wide significant loci in a genome-wide cross-trait911

analysis approach.912

Supplementary Table S6. Shared risk regions in different analyses.913

Supplementary Table S7. List of 95% credible set SNPs for each independent locus914

using fine mapping analysis.915

Supplementary Table S8. Genetic enrichment for hypothyroidism and complex916

diseases in specific tissues using LDSC and MAGMA.917

Supplementary Table S9. Genetic enrichment for hypothyroidism and complex918

diseases in specific tissues using LDSC, MAGMA, and scDRS.919

Supplementary Table S10. Summary of Mendelian randomization results for causal920

effects of CD4+ memory-related cells on diseases.921

Supplementary Table S11. Summary of Mendelian randomization results for the922

causal effect of diseases on CD4+ memory-related cells.923

Supplementary Table S12. SMR-prioritized genes associated with hypothyroidism and924

three complex diseases.925

Supplementary Table S13. Co-localization analysis of shared SMR priority genes in926

Table S12.927

Supplementary Table S14. Analyzing the causal effect of plasma proteins on disease928

using MR (unfiltered).929

Supplementary Table S15. Significant causal effects of plasma proteins on disease.930
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Supplementary Table S16. Co-localization analysis of etiological proteins that have a931

causal impact on disease.932

Supplementary Table S17. Causal effect of hypothyroidism on plasma proteins using933

MR (unfiltered).934

Supplementary Table S18. Significant causal effect of hypothyroidism on plasma935

proteins (hypothyroidism-driven proteins).936
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