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Abstract 

The on-going diversification of influenza virus necessicates annual vaccine updating. The 

vaccine antigen, the viral spike protein hemagglutinin (HA), tends to elicit strain-specific 

neutralizing activity, predicting that sequential immunization with the same HA strain will boost 

antibodies with narrow coverage. However, repeated vaccination with homologous SARS-CoV-

2 vaccine eventually elicits neutralizing activity against highly unmatched variants, questioning 

this immunological premise. We evaluated a longitudinal influenza vaccine cohort, where each 

year the subjects received the same, novel H1N1 2009 pandemic vaccine strain. Repeated 

vaccination gradually enhanced receptor-blocking antibodies (HAI) to highly unmatched H1N1 

strains within individuals with no initial memory recall against these historical viruses. An in 

silico model of affinity maturation in germinal centers integrated with a model of differentiation 

and expansion of memory cells provides insight into the mechanisms underlying these results 

and shows how repeated exposure to the same immunogen can broaden the antibody response 

against diversified targets. 

 

 

 

 

 

 

 

 

 



Introduction 

Seasonal influenza vaccines are designed to elicit protective antibody responses against the viral 

strains predicted to dominate during an upcoming winter season (Comber et al., 2023; Fiore et al., 

2009; Jordan et al., 2023; Sandor et al., 2021). The vaccine is typically trivalent or quadrivalent 

and aims to cover human-infecting influenza A viruses (IAV) and influenza B viruses (IBV) 

(Demirden et al., 2022; Reed et al., 2012; Soema et al., 2015). This has included an H1N1 

vaccine strain for group 1 IAV, an H3N2 vaccine strain for group 2 IAV, and Yamagata and/or 

Victoria lineages for IBV.  Elicitation of antibodies engaging the receptor binding site (RBS) on 

the influenza spike protein hemagglutinin (HA) to block viral attachment is considered a major 

source of protection and is routinely measured by the hemagglutination (HA) inhibition (HAI) 

assay (Cox, 2013; Krammer et al., 2020; Pedersen, 2014; Spackman and Sitaras, 2020). 

Antibody Fc effector functions also provide orthogonal immuno-protective activities (Boudreau 

and Alter, 2019; Boudreau et al., 2023; DiLillo et al., 2016).  

 

A concern of seasonal influenza vaccines is the lack of universality, where vaccine coverage can 

be lowered by antigenic drift of the virus, or even more worrying, antigen shift leading to the 

emergence of pandemic flu strains (Bedi et al., 2023; Krammer et al., 2018). These limitations 

are also underscored by the fact that individual HA molecules tend to elicit strain-specific 

antibody binding or neutralizing activity (Altman et al., 2018; Angeletti and Yewdell, 2018; Bedi 

et al., 2023; Sangesland and Lingwood, 2021). Here, sequential immunization with homologous 

influenza HA antigens typically serves to boost strain-limited humoral output (Henry et al., 2018; 

Krammer et al., 2018; Krammer and Palese; Sangesland and Lingwood, 2021). Addressing these 

deficits has been a basis for rationally designed immune-focusing concepts tasked with re-



orienting humoral immunity upon immune subdominant sites of conservation on influenza HA 

(Altman et al., 2018; Angeletti and Yewdell, 2018; Caradonna and Schmidt, 2021; Krammer et 

al., 2018; Sangesland and Lingwood, 2021; Wei et al., 2020). These efforts include structure-

based reconfiguration and presentation of conserved HA moieties, and sequential immunization 

with strain variant antigens to further promote expansion of B cell memory against the invariant 

sites (Amitai et al., 2020; Angeletti et al., 2019; Boyoglu-Barnum et al., 2021; Caradonna et al., 

2022; Nachbagauer and Palese, 2018; Sangesland et al., 2019; Yassine et al., 2015). A number of 

these ‘universal’ vaccine candidates are at various stages of clinical evaluation (Andrews et al., 

2023; Nachbagauer et al., 2021; Widge et al., 2023).  

Notably however, recent human SARS-CoV-2 vaccine data warrants reconsideration of the basic 

premise that sequential immunization with homologous antigens elicits strong but strain-limited 

humoral immunity (Garcia-Beltran et al., 2022; Muecksch et al., 2022; Schmidt et al., 2022). 

Three sequential vaccinations with the homologous Wuhan-strain glycoprotein spike antigen 

elicits neutralizing antibody responses against  highly unmatched Omicron variants. Broad 

neutralizing activity via engagement of the SARS-CoV-2 receptor binding site was acquired after 

the third vaccination, consistent with a diversification of the repertoire of the antibodies elicited 

(Garcia-Beltran et al., 2022; Muecksch et al., 2022; Schmidt et al., 2022). Both antigen 

presentation dynamics and epitope masking activities within B cell germinal centers (GCs) 

appear to play key roles in the emergence of this broadened antibody response (Yang et al., 

2023).  

In the present study, we evaluated whether diversification of antibody binding/neutralization 

breath via sequential immunization with homologous antigen is a general human vaccine 



principle. Accordingly, we evaluated an influenza vaccine cohort of individuals sampled 

longitudinally over four years (2013-2016) (Boudreau et al., 2023; Nunez et al., 2017). HAI was 

measured before and after vaccination in each year, using a virus panel composed of diverse 

influenza A and B viruses spanning > 100 years of evolution (Nunez et al., 2017). Importantly, 

this vaccine cohort closely followed the 2009-2010 H1N1 pandemic and included 4 years of 

repeat exposure to ‘non-imprinted’ /pandemic A/California/7/2009 (pHA) as the sole H1N1 

vaccine strain. Annual vaccination boosted HAI to vaccine matched virus but also, to highly 

divergent H1N1 viruses, despite the strong lack of relatedness. Importantly this broadening did 

not occur via initial memory recall, but rather intensified gradually, over the four year 

vaccination period within individuals that were devoid of initial back-boosting against historical 

H1N1 viruses. To define a mechanistic framework for this effect, we extended a previous in 

silico model that accounts for B cell affinity maturation within GCs and associated memory B 

cell differentiation and expansion outside germinal centers (Yang et al., 2023). Using this 

approach, we describe mechanisms that underlie the broadening of antibody coverage. We find 

that the broadening of the response is determined by the interplay between enhanced antigen 

presentation and epitope masking in germinal centers after booster shots, germline B cell 

affinities for different HA epitopes, and the level of conservation of these epitopes in the 

vaccinating strain with those on different historical vaiants.  In these contexts, the capacity to 

eventually elicit broadly reactive antibody responses using a single influenza vaccine strain is 

discussed.  

 

Results  



The RBS Patch of the 2009 H1N1 pandemic virus is strongly divergent from prior 

influenza strains  

We began by applying a structure based approach to define amino acid variation within the RBS 

(the epitope patch responsible for conferring HAI) amongst diverse IAV (H3N2 and H1N1) and 

IBV, spanning over 100 years of evolution (Figure 1, Table S1, Data S1). We assessed amino 

acid relatedness of the residues comprising the entire HA ectodomain (Figure 1A,B), and then 

the RBS patch, as defined by the structures of four human broadly neutralizing RBS-directed 

antibodies (bnAbs), each in co-complex with HA (Schmidt et al., 2015) (Figure 1C,D). The 

paratopes of these bnAbs structurally mimic sialic acid, the primary receptor for influenza virus 

(Schmidt et al., 2015). In each case, the epitope footprint consists of the core viral amino acid 

residues responsible for binding sialyl oligosaccharide, along with a surrounding ‘ring’ of 

contact positions that are differentially engaged by the four bnAbs (Figure 1C). We defined the 

RBS patch as the sialic acid binding residues + the cumulative ‘ring’ of contact positions defined 

by these antibodies (Figure 1C). Amino acid relatedness values within the HA ectodomain and 

the RBS patch were then represented as heat maps for the influenza A and B viruses (Figure 

1B,D). Within H1N1 viruses, the 2009 pandemic strain (pHA) stands out, along with A/New 

Jersey/1976, as strongly divergent, particularly within the RBS patch (Figure 1B,D). This is 

consistent with previous reports on the structure of the RBS (Cheung et al., 2020; Hong et al., 

2013; Xu et al., 2010) and the fact that both 2009 pandemic virus and the 1976 outbreak in Fort 

Dix, New Jersey, originated from swine lineages of H1N1 (Garten et al., 2009; Gaydos et al., 

2006; Mena et al., 2016; Sencer, 2011; Smith et al., 2009; Zimmer and Burke, 2009).   

 

Sequential vaccination with homologous pHA broadly boosts HAI   



To define how sequential immunization with homologous HA impacts antibody scanning 

breadth in humans, we evaluated the HAI coverage across the diverse viral strains from our 

relatedness analysis (Figure 1B,D), as elicited by repeated (4x) inoculation with influenza 

vaccine containing the same H1N1 component (pHA) over a four year period (2013-2016) 

(Nunez et al., 2017) (Figure 2A). An important distinction from previous analyses of this dataset 

is that we now focus on the same individuals that were followed longitudinally across the four 

year period (n=27 individuals) (Data S1). In each year, a sample was obtained before and then 

twenty days after vaccination, and we first evaluated the fold change in HAI elicited against the 

virus panel (IBV, IAV H3N2, IAV H1N1) by each vaccine component within each year (Figure 

2B,C). For H1N1, we find that pHA boosts HAI for the highly unrelated H1N1 strains, 

comparable to the HAI elicited for vaccine-matched A/California/07/2009; and also qualitatively 

similar to the HAI triggered by the H3N2 and IAB vaccine components (which are not novel 

pandemic hemagglutinins). These features were observed for full ectodomain or RBS patch 

(Figure 2B,C). Hence, immunization with homologous H1N1 pHA triggers elicitation of 

receptor-blocking antibodies against highly unmatched H1N1 viruses.    

 

Sequential vaccination with homologous pHA broadens HAI with gradual kinetics in 

subjects that do not initially back-boost to historical strains 

We next defined the kinetics of relatedness-independent broadening of H1N1 HAI over the four 

year period by graphing the fraction of responders vs non-responders (detectable vs non 

detectable boosting of HAI to each H1N1 strain) at each year (Figure 3A-C). Although pandemic 

HA will not be historically imprinted, memory recall of pre-existing immunity or ‘back boosting’ 

to historical strains would occur in response to the first antigen exposure  (Akkaya et al., 2020; 



Henry et al., 2018; Nunez et al., 2017; Palm and Henry, 2019; Reusch and Angeletti, 2023; 

Turner et al., 2020) and cannot be ruled out in the first vaccine year (2013). For this reason we 

focused on the initial non-responders, who boost against pHA (and the other seasonal vaccine 

components, see Figure 2B,C) but do not simultaneously broaden/back-boost against historical 

H1N1 strains after immunization in Year 1, and by definition lack B cell memory that is recalled 

by pHA (Figure 3A-C). The subsequent reduction of these non-responders upon sequential 

vaccination with pHA in later years, identifies a separate vaccine broadening effect with slower 

kinetics (Figure 3A-C). In this effect, the proportion of non-responders to divergent H1N1 

gradually decreases during the vaccine regimen, culminating in the near absence of non-

responders in Year 4. This effect is seen when the subjects are not age stratified (Figure 3A) and 

when the subjects are divided into older and younger ages (>50 vs <38 years) (Figure 3B,C). The 

corresponding increases in the proportion of responders are also observed in these groups over 

the vaccine regimen (Figure S1). Collectively, these data indicate that within individuals that 

lack initial back-boosting, sequential exposure to pHA can broaden the RBS-directed antibodies 

against highly unrelated H1N1. 

 

A computational model to study the mechanistic origin of increased coverage following 

sequential immunization with homologous HA 

To obtain mechanistic insights underlying the observed broadening of the antibody response in 

the absence of prior immune imprinting and back-boosting, we developed a computational model 

of the humoral immune response to RBS epitopes upon repeated vaccination. The model is 

principally an extension of our past work modeling humoral immune responses upon repeated 

vaccination with SARS-CoV-2 vaccine immunogens, but also builds on our other past studies 



(Amitai et al., 2020; Wang et al., 2015; Yang et al., 2023).  The purpose of this model is not 

quantitatively fit clinical data, but to identify mechanistic principles that support the observations. 

Below, we outline the structure of the in silico model; mathematical and computational details 

are provided in Star Methods. 

We first coarse-grained the HA RBS into three antibody epitopes (epitopes 1-3) on pHA 

(strain 1) and on two historical H1N1 strains (strains 2 and 3) (Figure 4A). In this model, a 

fraction pi of the germline B cells target epitope i and the immunodominance hierarchy is taken 

to be epitope 1 > epitope 2 > epitope 3. The immunodominant epitope on pHA (epitope 1) is 

heavily mutated as compared to strains 2 and 3. This is because the pandemic strain would 

escape previously immunodominant responses that target historical strains. We further assume 

that epitope 2 is relatively conserved between strains 1 and 2, but not conserved between strains 

1 and 3; epitope 3 is relatively conserved between strains 1 and 3, but not strains 1 and 2 (Figure 

4A). In this way, we model three historical strains that are different from each other, but share 

some similarities as would be expected for all H1N1 viruses.  

The immunodominance hierarchy of the three epitopes is reflected in the distribution of 

germline B cell affinities for antigen, an attribute that is important for B cell recruitment into 

GCs (Abbott and Crotty, 2020; Abbott et al., 2018; Amitai et al., 2020; Dosenovic et al., 2018; 

Sangesland and Lingwood, 2021). Detectable germline BCR affinities for antigen can range from  

10-7 to 10-4 M (Feldman et al., 2021; Ronsard L, 2023; Sangesland, 2019; Sangesland et al., 

2022), and a dissociation constant of ~10-6 M is the estimate we use for the threshold for entry 

into GCs (Batista and Neuberger, 1998). Since high germline affinities are rare (Feldman et al., 

2021; Kuraoka et al., 2016; Ronsard L, 2023; Sangesland, 2019; Sangesland et al., 2022), we 

consider the distribution of affinities to decay exponentially. More immunodominant epitopes 



constitute a larger fraction pi of germline B cells and exhibit a longer high-affinity tail (Figure 

4B). We varied parameters that reflect the conservation of these epitopes and their relative 

immunodominance.  

To then study humoral immune reactions to the different epitopes in silico, we modelled 

key steps that determine the antibody response pathway to protein antigens including: [1] antigen 

deposition on the surface of follicular dendritic cells (FDCs) (De Silva and Klein, 2015; Victora 

and Nussenzweig, 2022); [2] activation and entry of of naive B cells into germinal centers (GCs), 

affinity and T helper-cell-driven selection within GCs (De Silva and Klein, 2015; Victora and 

Nussenzweig, 2022; Young and Brink, 2021), and differentiation into memory B cells and 

plasma cells (Akkaya et al., 2020; Crotty, 2015; Palm and Henry, 2019); [3] relatively rapid 

expansion and differentiation of memory B cells into short-lived plasma cells during the recall 

responses which occur outside GCs or in extra germinal center locations (EGCs) (Moran et al., 

2018; Van Beek et al., 2022).  

A set of differential equations was used to model the dynamics of antigen deposition and 

presentation on FDCs (see Star Methods for details). Circulating antibodies can bind to soluble 

antigen to form immune complexes (ICs). For the first immunization, we assume that only 

weakly binding circulating IgM antibodies are available for binding to the antigen and forming 

ICs, which are then deposited on FDCs.  ICs deposited on FDCs are longer-lived than soluble 

antigen. In the first few days after vaccination, soluble antigen rapidly decays (Aung et al., 2023; 

Martin et al., 2021). Therefore, the weakly binding IgM antibodies can deposit relatively small 

amounts of ICs on FDCs before soluble antigen decays. For subsequent immunizations, stronger 

binding antibodies elicited by the previous immunization are available to bind antigen and form 

ICs that are deposited on FDCs before soluble antigen decays. The differential equations that 



describe these processes are coupled to an agent-based simulation of the stochastic processes that 

occur in GCs and EGCs to produce memory B cells and antibodies. The stochastic simulations 

also model GC entry of B cells. 

In the stochastic agent-based simulations of GCs and EGCs, each B cell is an agent and 

the probabilities of its activation, selection, proliferation, mutation, and differentiation are 

calculated at each time step (0.01 days). Our model accounts for the following immunological 

principles and factors in the activation and selection of B cells: GC B cells internalize antigen 

based on their binding affinities to epitopes in the vaccine strain (Batista and Neuberger, 1998; 

Fleire et al., 2006); the amount of antigen internalized grows with the antigen binding free 

energy (or affinity) and saturates above a threshold affinity (Foote and Eisen, 1995; 2000); and 

individual B cells compete for subsequent T cell help to promote B cell survival. Among the B 

cells that are positively selected in the GC, some stochastically exit the GC and differentiate into 

either plasma or memory B cells (Akkaya et al., 2020; Crotty, 2015; Palm and Henry, 2019). The 

majority of positively selected B cells are recycled for mutation-selection cycles and they 

proliferate and undergo somatic hypermutation (SHM) (Collins and Jackson, 2018; De Silva and 

Klein, 2015; Glanville et al., 2009; Li et al., 2004; Mesin et al., 2016; Victora and Nussenzweig, 

2012; 2022). SHM is responsible for affinity-changing mutations, though it also leads to 

apoptosis or no affinity change with different probabilities (Amitai et al., 2020; Wang et al., 

2015; Yang et al., 2023; Zhang and Shakhnovich, 2010). Based on data from experiments on 

affinity changes upon mutations at protein-protein interfaces, the change in affinity due to 

mutation is drawn from a log normal distribution with only 5 % of mutations being beneficial 

(Kumar and Gromiha, 2006; Zhang and Shakhnovich, 2010). A summary of the mathematical 

details of the steps described above is provided in Star Methods.  



In our model, memory cells are stochastically selected in an affinity-dependent way and 

expanded in EGCs via the same processes as in GCs, except that there are few to no mutations 

(none in our model) (Moran et al., 2018; Van Beek et al., 2022; Yang et al., 2023). B cells 

exiting EGCs differentiate into antibody-secreting plasma cells with a probability of 0.6, because 

experimental data shows that 60 % of new proliferating memory B cells differentiate into plasma 

cells (Moran et al., 2018). These plasma cells produce antibodies at rates estimated from 

experiments (Goel et al., 2021; Muecksch et al., 2022). Our model also incorporates epitope 

masking in which circulating antibodies specific for a given epitope can enter ongoing GCs and 

EGCs and compete with B cells specific for the same epitope (Bergstrom et al., 2017; Schaefer-

Babajew et al., 2023; Tas et al., 2022; Zarnitsyna et al., 2016).  

While GC and EGC processes are driven by the vaccine antigen (strain 1), we also track 

the affinities of the resulting memory B cells and antibodies for strains 2 and 3 as well.  A B 

cell’s affinity for each strain depends on its initial affinity and the affinity-changing mutations 

that occur within the GC. The size of affinity-changes upon mutation for the three epitopes on 

different strains are drawn from correlated log-normal distributions. The level of correlation is 

described by a parameter, �, that determines a covariance matrix. This parameter is related to the 

level of conservation and amino acid relatedness between the strains for the B cell’s target 

epitope. For instance, if 70% of the amino acids in an epitope are shared between strains 1 and 2, 

we can approximate that ~70% of the beneficial mutations for B cells targeting this epitope in 

strain 1 are beneficial for strain 2 as well. The value of � for B cells targeting epitope 2 is high 

between strains 1 and 2, but low between strains 1 and 3. The value of � for B cells targeting 

epitope 3 is high between strains 1 and 3, but low between strains 1 and 2. The value of � for B 

cells targeting epitope 1 is low between strain 1 and strains 2 and 3 as it is poorly conserved in 



historical strains. We vary the values of the parameter, �, and study the effects.   

  For every immunization, we simulate 200 GCs and 1 EGC. Ten different 

simulations are carried out for any given condition and the results shown are averages over these 

simulations. The parameters used in the simulations are provided in Table S2. 

Booster shots of homologous pHA provide increasing coverage of historical strains through 

pathways that characterize the humoral response 

Figure 5A shows the results of our simulations for antibody titers elicited against strain 1 (pHA) 

and the two historical strains (strains 2 and 3) after each of four immunizations with strain 1. The 

titers are calculated based on the affinity and number of antibodies that target the epitopes in 

each strain. After the first immunization, significant titers of antibodies are generated only 

against the dominant epitope of strain 1. However, after the second immunization the titers are 

boosted against all strains, including strains 2 and 3. Continued boosting with pHA continues to 

amplify heterologous coverage, even when the homologous boosting titer has plateaued.     

 Experiments show that injected soluble antigen decays relatively rapidly (Aung et al., 

2023; Martin et al., 2021; Tam et al., 2016). The vaccine antigen is the pandemic strain and the 

individuals studied do not initially backboost responses to historical strains. Therefore, upon the 

first immunization only generic circulating IgM antibodies, with low affinity for the antigen, are 

available to form the immune complexes needed for antigen deposition on FDCs (see 

computational methods section). Thus, our computational results show that very little antigen is 

deposited on FDCs after the first immunization with a new antigen (Figure 5B).  

The germline B cells targeting the immunodominant epitope on strain 1 are more 

abundant and generally have higher affinities than the B cells engaging the subdominant epitopes. 

When antigen available on FDCs is low after the first immunization, the greater abundance and 



affinities of these germline B cells confers an especially strong advantage to them in entering 

GCs compared to B cells targeting subdominant epitopes. Furthermore, they also are much more 

likely to dominate GC reactions during affinity maturation. Thus, the high affinity memory B 

cells generated after the first immunization predominantly target the immunodominant epitope 

(Figure 5C, top panel).  

 After the second immunization, the EGCs facilitate the production of antibodies that 

engage strain 1, but not the historical strains. This is because the available memory B cells after 

the first immunization largely target the immunodominant epitope that is not conserved in the 

historical strains (Figure 5C, top panel). Thus, for many days after the second immunization, 

significant titers of antibodies that can target historical strains are not elicited (Figure 5A). 

However, secondary GCs also form during this time. Upon the second immunization, higher 

affinity IgG antibodies specific for the antigen that were generated during the first immunization 

are available to bind to the antigen and deposit it on FDCs before the antigen is degraded (Figure 

5B). Higher amounts of deposited antigen allow lower-affinity germline B cells that target sub-

dominant epitopes to enter the GC and be positively selected. As affinity maturation proceeds, 

these GC B cells acquire higher affinity to the subdominant epitopes that are relatively conserved 

between strain 1 and the historical strains, and generate high affinity memory B cells (Figure 5C 

middle panel). The plasma cells produced by the GCs produce antibodies that engage strains 2 

and 3 (particularly strain 2 since epitope 2, the second most dominant epitope, is relatively 

conserved between strains 1 and 2).  

After the third immunization, memory cells generated after the second immunization that 

target epitopes 2 and 3 with high affinity are also selected based on their affinities and expanded 

in the EGC. This results in further amplification of antibodies that target epitopes 2 and 3 (Figure 



5A). Antigen deposition on FDCs is also somewhat elevated after the third immunization (Figure 

5B).  So, strain 3 is engaged more potently and this increases the relative number of memory B 

cells targeting epitope 3 compared to epitope 2 among the memory B cells  generated in GCs 

after the third immunization (Figure 5C, bottom panel). As a consequence, the difference 

between the titers produced against epitopes 2 and 3 is further decreased after the fourth 

immunization (Figure 5A). However, the overall improvements to antibody titers are minor 

because antigen presentation in the GCs and expansion of memory B cells in EGCs is similar to 

that after the third immunization.  

The relative coverage of strains 2 and 3 upon repeated vaccination depends upon the 

relative immunodominance of epitopes 2 and 3 in the pool of germline B cells. To test the effects 

of modifying the immunodominance hierarchy, we increased the fraction of germline B cells that 

target epitope 2, and decreased the fraction that target epitope 3. This enhances the 

immunodominance of epitope 2 over epitope 3. Consequently, as shown in Figure 5D, the 

responses to epitope 3 and to historical strain 3 in which epitope 3 is conserved are less potent 

compared to the results shown in Figure 5A.   

The relative coverage of historical strains also depends on the conservation of 

subdominant epitopes between the historical and immunizing strains. In Figure 5A, the 

conservation of epitope 2 between strains 1 and 2 and of epitope 3 between strains 1 and 3 are 

the same. The results show that higher titers are elicited against strain 2 than strain 3, which 

aligns with the immunodominance of epitope 2 over epitope 3. However, it is possible that a 

more immunodominant epitope is less conserved as viruses mutate to avoid immune detection 

(Altman et al., 2018; Angeletti et al., 2017; Angeletti and Yewdell, 2018). Thus, we examined 

the effects of reducing the conservation of epitope 2 while fixing the conservation of epitope 3. If 



the conservation of epitope 2 between strains 1 and 2 is decreased below a critical value (see 

Figure S2), the advantage of epitope 2 due to a more favorable germline distribution is 

outweighed by weaker conservation. In Figure 5E, epitope 2 is more weakly conserved than in 

Figure 5A (but the germline immunodominance hierarchy is kept the same), resulting in lower 

titers against strain 2 than against strain 3. 

Epitope masking enhances the generation of antibodies that can engage historical variants 

upon boosting with unmatched homologous HA 

Circulating antibodies can enter GCs and bind to their corresponding epitopes on antigen 

presented on FDCs (Schaefer-Babajew et al., 2023; Tas et al., 2022). This masking of an epitope 

by soluble antibodies lowers the effective amount of antigen available to GC B cells targeting the 

same epitope, reducing their competitive fitness within the GC. This property of epitope masking 

by circulating antibodies can be applied to regulate the GC participation of naive B cells 

according to epitope specificity  and the competitive environment for GC B cells (Schaefer-

Babajew et al., 2023; Tas et al., 2022; Yang et al., 2023). Our computational model shows that 

after the second immunization, most of the circulating antibodies bind to the dominant epitope. 

This is because most of the memory B cells produced after the first immunization are directed 

against the dominant epitope (Figure 5C and 6C), and these memory cells are rapidly expanded 

in EGCs after the second immunization to generate the corresponding antibodies. Accordingly, 

we find that the entry and selection of subdominant-targeting B cells during affinity maturation 

are enhanced by including the effects of epitope masking which generates more memory cells 

that target the subdominant epitopes (Figure 6C and 6D). This results in larger antibody titers 

targeting strains 2 and 3 if epitope masking is included (Figure 6A). Likewise, after the third 

immunization, the antibodies from the second vaccination begin to mask epitope 2, promoting 



the generation of memory B cells and antibodies targeting epitope 3 (Figure 6). This feature of 

increasing antibody titers against the historical strains is observed when we consider two cases of 

epitope masking (Figure 6A and 6B): [1] where the three epitopes under consideration are non-

overlaping; and [2] where the epitopes overlap with each other. The first case shows the largest 

effect of epitope masking. In the second case, epitope masking effects remain significant, even if 

we consider a modest level of epitope overlap (e.g. 30% between epitope 1 (dominant) and 

epitope 2 (subdominant); and 30% between epitope 1 (dominant) and epitope 3 (subdominant)). 

Epitope overlap between dominant and subdominant epitopes generally decreases titers 

against historical strains compared to fully distinct epitopes. However, after the third vaccination 

the antibody response titer against strain 2 is higher when there is epitope overlap (Figure 6B, 

right panel). This is because the second immunization produces more memory cells targeting the 

dominant epitope when there is epitope overlap (Figure 6D). These memory cells are rapidly 

expanded in EGCs and so antibodies mask the dominant epitope more strongly during the third 

immunization when the epitopes overlap. This leads to the production of more high-affinity B 

cells that target epitope 2 after the third immunization, and subsequently higher titers against 

strain 2.    

 

Discussion 

Our results reveal broadening of antibody coverage following repeated immunization with 

homologous pHA. This occurred over a period when the subjects had limited imprinting to this 

vaccine strain, and the process occurred gradually within individuals that did not initially ‘back-

boost’ against historical H1N1 strains. These findings are consistent with sequential exposure to 

SARS-CoV-2 mRNA vaccines, where repeated immunization with the homologous Wuhan 



vaccine strain eventually elicits non-imprinted coverage against highly unmatched Omicron-

lineages of SARS-CoV-2 (Garcia-Beltran et al., 2022; Muecksch et al., 2022; Schmidt et al., 

2022). Our computational results describe how aspects of the humoral response (enhanced 

antigen presentation on FDCs and epitope masking) are a likely origin of eliciting non-imprinted 

antibody breadth to influenza HA. These mechanisms are consistent with the immune reactions 

that broaden antibodies after boosting with the homologous SARS-CoV-2 vaccine (Yang et al., 

2023). Collectively, our results point to a general feature of the humoral response that 

intrinsically broadens antibodies against unmatched/diversified antigen targets upon repeated 

vaccination with the same novel antigen.  

 This principle of preserving diversified or ‘non-homogenized’ antibody output during on-

going immune reactions has emerged as an important theme for germinal center and memory B 

cell responses to protein antigens (de Carvalho et al., 2023; Hagglof et al., 2023; Kuraoka et al., 

2016; Mesin et al., 2016; Mesin et al., 2020; Radmacher et al., 1998; Ronsard L, 2023; Sabouri 

et al., 2014; Silver et al., 2018; Tas et al., 2016; Van Beek et al., 2022). Our in silico results 

would suggest that intrinsic broadening of the antibodies generated in response to homologous 

antigen is an extension of this fundamental principle, enabling polyspecific responses and broad 

B cell reactivities that are tuned by antigen presentation and epitope masking effects.   

 Operationally, it will be important to integrate this information to define the number of 

homologous immunizations needed to elicit a given level of vaccine coverage of historical or 

new strains. Our simulations indicate antibody broadening depends on the interplay of several 

key factors including: the precursor frequencies of germline B cells targeting these epitopes, the 

affinities of germline B cells for their target epitopes, and the conservation of shared epitopes 

within the RBS. Precursor frequencies and germline affinities determine the B cell pool’s initial 



affinities toward target strains—historical or emergent—while conservation of shared epitopes 

governs how those affinities change during affinity maturation in response to selection of GC B 

cells for their affinities to the immunizing strain. Simulation results show that the effects of the 

precursor frequencies and germline affinities can compete with the effects of epitope 

conservation in determining the coverage of a particular strain.  

Our results also suggest that the germline B cell-mediated effects noted above are 

particularly important in earlier stages of the sequential vaccine regimen. But once higher 

affinity antibodies circulate (and recall of B cell memory becomes operational), epitope masking 

effects and enhanced antigen deposition on FDCs further modulate the immunodominance 

hierarchy to favor responses to sub-dominant epitopes. While our model does not account for 

memory B cells seeding secondary GCs, our previous work indicates that if more memory B 

cells enter secondary GCs the evolution of broadened antibody responses is diluted (Yang et al., 

2023).  

In all cases, our simulations recapitulate the clinical vaccine results in a qualitative 

manner. This owes to our development of a simplified model for the vaccine antigen, its relation 

to historical strains, and the characteristics of the germline B cells that engage RBS epitopes. 

While recapitulation of antibody broadening through simplified computational models points to 

fundamental/core features of adaptive immunity, more comprehensive epitope mapping of the B 

cell responses to the RBS targets (structure, engagement affinity, immunodominance patterns) 

will be needed to assemble more complete prediction maps to guide vaccine design.  

 In summary, we describe a phenomenon that defies the long-held view that sequential 

immunization with homologous influenza HA antigens serves to only/principally reinforce the 

boosting of antibodies with narrow coverage (Henry et al., 2018; Krammer et al., 2018; 



Krammer and Palese; Sangesland and Lingwood, 2021). Previous B cell epitope prediction 

algorithms have failed to computationally delineate and accurately predict patterns in the 

humoral response (Mahanty et al., 2015; Rockberg and Uhlen, 2009; Sela-Culang et al., 2013; 

Van Regenmortel, 2002; 2011), but by modeling the key immunological steps that underscore 

adaptive immune reactions to protein antigen (Akkaya et al., 2020; Crotty, 2015; De Silva and 

Klein, 2015; Palm and Henry, 2019; Victora and Nussenzweig, 2022; Young and Brink, 2021), 

we recapitulate the clinical findings and describe mechanisms that underlie them. This 

broadening effect has thus far only been observed in human antibody responses to vaccination 

and we suggest that it may further inform universal vaccine approaches (Caradonna and Schmidt, 

2021; Krammer et al., 2018; Sangesland and Lingwood, 2021; Wei et al., 2020). 

Immunologically, we suggest that antibody broadening reflects an in-built feature of continued B 

cell diversification, a principle that will insure antibody complementarity to hypervariable 

antigen targets.  

 

Limits of the Study 

This work lays the groundwork to experimentally define factors identified as significant for 

antibody broadening in vivo, including epitope conservation, epitope masking, and antigen 

presentation on FDCs. While the model predicts that epitope conservation impacts titers against 

historical strains, the data examined in this study do not show a clear trend between amino acid 

similarity with the vaccine strain and the titer levels or coverage kinetics among H1N1 strains. 

Exploring alternate experimental metrics for epitope conservation instead of amino acid 

similarity, along with examination of diverse sets of clinical data, can improve the model and 

lead to better congruence between model predictions and data. In addition, experimentally 



defining the relative contribution of epitope masking and antigen presentation on FDCs will 

necessate vaccine/immune challenge models where these parameters can be measured 

individually and that accurately reflect human humoral response features (Aung et al., 2023; 

Schaefer-Babajew et al., 2023; Tas et al., 2022; Zarnitsyna et al., 2016). In humans, an accurate 

description of individual imprinted B cell memory to influenza HA will also be needed to predict 

the broadening activity of homologous influenza vaccine regimen, in lieu of another pandemic 

influenza virus strain that does not back-boost to historical strains.  
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Data and Code Availability 

All longitudinal HAI values used in this study are provided in Data S1. All original code and 

data files for the computational results have been deposited at https://github.com/mtang17/flu 

and are publicly available.  



 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

We evaluated the HAI titers elicited by a clinical influenza vaccine that was sequentially 

immunized (4x) over a four year period (2013-2016) and contained the same H1 component 

(A/California/7/2009) in each of the vaccine years (Nunez et al., 2017). An important distinction 

from the previous analysis is that we focused only on individuals that were longitudinally 

sampled across the four year period (n=27 individuals; subjects are grouped into two age 

categories: above 50 years old and below 38 years old, see Data S1). In each year a blood sample 

was obtained before and then twenty days after vaccination. HAI titers for viruses spanning 100 

years of influenza evolution were measured in each of these samples (Nunez et al., 2017) (see 

Data S1 and Table S1). The H1N1 viral panel for HAI comprised:   A/South Carolina/1/1918, 

A/Weiss/JY2/1943, A/Fort Monmouth/1/1947, A/Denver/1/1957, A/New Jersey/6/1976, 

A/USSR/90/1977, A/Chile/1/1983, A/Singapore/6/1986, A/Texas/36/1991, A/Beijing/262/1995, 

A/New Caledonia/20/1999, A/Solomon Island/3/2006, A/Brisbane/59/2007, A/California/07/2009. 

The H3N2 vaccine panel for HAI comprised: A/Hong/Kong/1/1968,   

A/Hong/Kong/4801/2014,A/Nanchang/933/1995, A/New/York/55/2004, A/Panama/2007/1999, 

A/Perth/16/2009, A/Port/Chalmers/12/1973, A/Shandong/9/1993, A/Switzerland/9715293/2013 

A/Sydney/5/1997, A/Texas/1/1977, A/Texas/50/2012, A/Victoria/361/2011,  A/Wisconsin/67/2005.    

The IBV viral panel for HAI included: B/Brisbane/60/2008, B/Florida/4/2006, B/Harbin/7/1994, 

B/Hong/Kong/330/2001, B/Lee/1940, B/Malaysia/2506/2004, B/Massachusetts/2/2012, 

B/Phuket/3073/2013, B/Texas/06/2011, B/Wisconsin/1/2010, B/Yamagata/16/1988 

 

METHOD DETAILS 



 

Amino acid relatedness in HA ectodomains or within the RBS patch 

Amino acid sequences of HA ectodomains from the different strains used in HAI were obtained 

from Genbank (https://www.ncbi.nlm.nih.gov/genbank/) or GISAID (https://gisaid.org/) (Table 

S1). The amino acid positions comprising the HA RBS patch was defined by the structures of 

four human broadly neutralizing RBS-directed antibodies, each in co-complex with HA (Schmidt 

et al., 2015). We used this information to define amino acid relatedness between the HA 

glycoproteins of all the influenza viruses used in our HAI panel. Pairwise relatedness was 

defined for both full length HA ectodomain and for the RBS patch. In both cases, amino acid 

sequence relatedness was obtained by first aligning two amino acid sequences and then 

computing the ratio of matched amino acid counts over the total amino acid counts in the aligned 

sequences. Heatmaps visualizing the pairwise amino acid sequence relatedness values were 

graphed using “pheatmap” function from R package “pheatmap” (version 1.0.12). Amino acid 

relatedness is represented as epitope conservation with the parameter � in the computational 

model (see modeling section below). 

 

Analysis of HAI titers in relation to amino acid relatedness 

We constructed dot plots to visualize the relationship between the fold change of HAI titers to 

the individual viruses in relation to their amino acid relatedness (for both the HA ectodomain and 

RBS patch) to the vaccine strain used in each year. In the case of the H1 vaccine component, the 

same H1 vaccine strain (A/California/7/2009) was used in each year. These plots were generated 

using  



the “geom_point” function from R package “ggplot2” (version 3.4.2). The fold change of HAI 

titer for each patient was computed by dividing the post-vaccination HAI titer by the 

corresponding pre-vaccination HAI titer. 

 

Longitudinal analysis of antibody broadening 

To evaluate antibody broadening in response to homologous H1 (A/California/7/2009) we 

divided the HAI titers for H1N1 viruses from each individual subject into responders and non-

responders to each viral strain in each year. Responders were defined by having non-decreasing 

fold changes of HAI titers (post-vaccination HAI titer / pre-vaccination HAI titer), i.e. fold 

change of HAI titers greater than 1. The non-responders were defined by having decreasing fold 

changes of HAI titers (post-vaccination HAI titer / pre-vaccination HAI titer), i.e. fold change of 

HAI titers less than 1.  We tracked patients in the two age groups: >50 years old, having four 

years of complete HAI titers (2013-2016); and <38 years old, having three years of complete 

HAI titers (2014-2016). Bar plots showing the responder and non-responder ratios was graphed 

using “geom_bar” function from R package “ggplot2” (version 3.4.2). Linear regression analyses 

were also performed on the fraction of responders (or non-responders) in each year after 

standardizing the responder (or non-responder) value to the number of subjects in each age group 

(>50 years old or <38 years old). The linear regressions were performed using “ggscatter” 

function with the fitting equation shown by “stat_regline_equation” function from R package 

“ggpubr” (version 0.6.0). Corresponding P and r2 values were computed using “lm” function 

from R package “stats” (version 4.3.1). 

 

Immune Reactions in silico 



The computational model is adapted from past work on the effects of repeated vaccination with 

COVID vaccines (Yang et al., 2023). Changes to the original model are described in the main 

text and below, along with key mathematical equations that describe the model. Interested 

readers can find in-depth rationale for model development, exploration of alternative model 

structures, and further analysis of parameter sensitivity in the earlier paper on the outcome of 

multiple immunizations with COVID vaccines (Yang et al., 2023). We use the same symbols to 

denote quantities as in the paper on COVID vaccines (Yang et al., 2023). 

 

Differential equations describe antigen dynamics and this is combined with stochastic 

simulations of GC and EGC processes. The time step is 0.01 day. For each situation, 200 GCs 

are simulated, and from the second immunization on, 1 EGC is simulated along with the GCs. 

Ten such simulations are carried out for each set of conditions and the results are averaged over 

the ten simulations to report results.  

 

Antigen dynamics 

Differential equations describe the reactions that govern the concentration of antigen and 

antibody, as shown in the table below. We use the following abbreviations and symbols: soluble 

antigen (Ag), soluble antibody (Ig), soluble immune complex (IC), immune complex on 

follicular dendritic cell (IC-FDC), plasma cell (PC), rate of decay (d), rate of reaction (k), 

dissociation constant of serum antibodies (��), dissociation constant of plasma cell BCRs (��
��).  

 

Equation Reaction(s) Description 



������������ 	 �� 
�� 
 �� � �� 

 

Fast equilibrium for formation of 

immune complex 

������ 	 ������� �� � � Decay of free soluble antigen 

������ 	 ����	
������ 
�����  ���� 	 ����	
������

 ������  ���� 

�� � ��  ��� 

 

��  ��� � � 

Immune complex transport to 

follicular dendritic cells 

Consumption and decay of antigen on 

follicular dendritic cells 

������ 	 �������  ������� �� � �� 
 �� 

�� � � 

Antibody production by plasma cells 

Decay of free soluble antigen 

��� 	 ��
��  ������������� 
 ����  

- Derived from equations above, as 

detailed in supplement of Yang, et al. 

(2023). 

 

The parameters used in these equations can be found in Table S2, and are identical to our 

previous publication (Yang et al., 2023). Upon the first vaccination, only weakly binding IgM 

antibodies are available for binding to soluble antigen and deposoiting ICs on to FDCs. After 

subsequent vaccinations, antigen specific antibodies are available. 

 

B cell dynamics in GCs and EGCs 

Each GC is associated with a pool of 2000 naïve B cells (Yang et al., 2023). A fraction ��  of 

these naïve B cells target epitope �. We model 3 epitopes of the influenza spike protein, which is 

an increase from the 2 epitopes previously used to model the SARS-CoV-2 spike protein (Yang 



et al., 2023). This allows us to account for the diversity in influenza strains, each with distinct 

epitopes that may be conserved with the H1N1 CA09 vaccine strain (see main text).  

 

The germline binding affinities � 	 log ���� of the naïve B cells for the vaccine strain have 

discrete values between 6 and 8, expressed as �� 	 6 
 0.2� for � 	 0, 1, … , 10. The lower 

value of  6 was chosen based on data as described in main text, and germline affinities that are 

one hundred times greater have also been observed (Yang et al., 2023). The frequency of naïve B 

cells targeting epitope �  in the affinity bin ��  is a truncated geometric distribution and is 

determined as follows: 

%����� 	 &������
'����������∑ '�����������

 

where the number of naïve B cells &����  is 2000 and the minimum germline affinity �� is 6 in 

these simulations. )� is determined such that  

%����
�� 	 �� 

where ��
� is defined as follows using the parameters ��

�, ����, and ����: 

��
� 	 ��

� 

��
� 	 ��

�  ���� 

��
� 	 ��

�  ���� 

The parameters are set such that ��
� * ��

� * ��
�, reflecting the generally higher affinities for more 

dominant epitopes. The immunodominance hierarchy is further enforced by setting �� * �� * ��, 

meaning that more dominant epitopes are targeted by a greater number of naïve B cells. 

 



Since individuals initially have a weak response (sub-dominant) against historical influenza 

strains, the germline binding affinity of all naïve B cells that target the epitopes that are 

conserved between the vaccinating strain and historical strains is set to the lowest possible 

germline affinity in these simulations (� 	 6). 

 

After initializing the pool of naïve B cells, the B cells can be stochastically activated. The 

probability of activation for a naïve B cell depends on the quantity of vaccine antigen it captures, 

which is determined by both the antigen concentration and binding affinity to the vaccine strain. 

The amount of antigen captured by B cell + is modeled as 

�� 	 , ���
10��� ��,��"���-#

 

where � is the effective antigen concentration, �� is the reference antigen concentration, ��  is the 

B cell’s binding affinity for vaccine strain, and �� is the reference affinity. The effective antigen 

concentration is � 	 0.01����� 
 ����� 
 ���  ����, where antigens presented on FDCs are 

more potent at activating B cells (Kim et al., 2006). The selection stringency � represents how 

sensitive the amount of antigen captured is to small differences in antigen concentration or 

binding affinity. The probability of activation is ��. /'00 + �1 2/3�423'�� 	 min ��� , 1�. 

 

Activated B cells can then stochastically enter the GC. Entry into the GC depends on antigen 

captured and competition for limited T cell help (Lee et al., 2021; Schwickert et al., 2011). The 

rate of entry for an activated B cell + is 

8� 	 &$%&&������

��9�:
1 
 &$%&&������

��9�: 



where &&������  is the number of activated B cells, &$%  is the capacity for GC entry based on 

limited T cell help, and 9�: is the average amount of antigen captured by all B cells. Thus, 

'���

'��	�
�	��
 represents the competition between B cells for T cell help and 

��
(�)

 represents the 

competitive advantage of a particular B cell + over other cells. The probability of GC entry is 

��. /'00 + ';3')1 <�� 	 1  '�*���. 

 

GC B cells also capture antigen and compete for T cell help to become stochastically activated. 

The rate of positive selection is 

=� 	 =$%

&+&&������

��9�:
1 
 &+&&������

��9�: 
where =$% is the maximum rate of positive selection, &&������  is the number of activated B 

cells, and &+  is the number of helper T cells. 

 

If a B cell is positively selected, it exits the GC with probability ��%�� or is recycled for mutation-

selection cycles in the GC with probability 1  ��%��. If the B cell exits, it becomes a plasma cell 

with probability ��,
$ or a memory cell with probability 1  ��,
$. If the B cell proliferates, 

one of the daughter cells mutates. The mutation may change affinity (probability 0.2), result in 

apoptosis (probability 0.3), or be silent (Zhang and Shakhnovich, 2010). 

 

Each B cell has a string of 0s and 1s for the residues on the paratope with a total length of ;��
. 

The string of residues starts as all 0s in a naïve B cell. When there is an affinity-changing 

mutation, one of the bits (residues) is randomly chosen and flipped. The change in affinity is 



drawn from a shifted log-normal distribution, independently for each residue (Kumar and 

Gromiha, 2006; Zhang and Shakhnovich, 2010). The affinity of a B cell + for a particular strain is 

determined by both the germline affinity and affinity-changing mutations, as follows: 

��

���� 	 ��

�,
���� 
 > ?�,�1�,�
����
���

�-�

 

 

where ��
�,
����  is the germline affinity, ?�,� @ A0,1B is the mutational state of residue � , and 

1�,�
����  is the change in affinity due to a mutation at residue �. 1�,�
����  is correlated between 

different strains, as follows (1�,��  is the change in affinity for strain 1, 1�,��  is the change in affinity 

for strain 2, and so on). The values of 1�,�
����are drawn from identical log normal distributions 

that are correlated as follows: 

C1�,�� , 1�,�� , 1�,�� D~'' .,/�0"  F 

Σ 	 H 1 ��� ������ 1 0��� 0 1 I 

where J, K, F were chosen such that only ~5 % of affinity-changing mutations are beneficial, as 

shown in experimental studies (Kumar and Gromiha, 2006; Zhang and Shakhnovich, 2010). Σ is 

the correlation matrix and ��� and ��� parameterize the correlation of affinity changes between 

strains 1 and 2 and strains 1 and 3, respectively. The level of correlation is related to the level of 

conservation between the strains for B cell +’s target epitope, as described in the main text. We 

only consider correlation between the vaccine strain (strain 1) and historical strains (strains 2 and 

3), but not between strains 2 and 3. Since B cells are selected for their affinity to strain 1, the 

correlation between strains 2 and 3 does not impact the nature of the antibody or memory B cell 

response. 



 

In this study, we considered the correlation between three strains compared to two strains in our 

COVID model (Yang et al., 2023) since we examined the effect of sequential immunization on B 

cell responses against multiple unmatched influenza strains. 

 

After the first immunization, pre-existing memory cells stochastically expand and differentiate in 

the EGC. The memory cells are selected for expansion in the same affinity-dependent way as GC 

B cells, except memory cells do not undergo mutation in our model. The number of helper T 

cells is set to its maximum value to reflect the faster kinetics of the EGC (Goel et al., 2021; 

Moran et al., 2019). B cells exiting the EGC differentiate into plasma cells with a probability of 

0.6 (Moran et al., 2018). 

 

Epitope masking 

When epitope masking is considered, GC B cells specific for a particular epitope cannot capture 

antigen on FDCs if that epitope is bound to circulating antibodies. These circulating antibodies 

are produced by plasma cells from previous immunizations and expansion and differentiation of 

memory cells from previous immunizations. The amount of bound antigen is calculated using 

fast equilibrium of receptor-ligand binding: 

���$
�����  ����� 
 ����� 
 ��
�����$
���� 
 ��������� 	 0 

where ���$
����  is the concentration of masked, i.e. bound, antigen, �����  is the effective 

antibody concentration, and ��
� is the effective average dissociation constant. The values in the 

equation above are calculated separately for each epitope. When we do not consider epitope 

overlap, ����� and ��
� are exactly the concentration of antibodies targeting a particular epitope 



and the average dissociation constant of those antibodies. In the presence of epitope overlap, 

some antibodies can mask epitopes that spatially overlap with their primary target. In this case 

L������������������M 	 H 1 N�� N��N�� 1 N��N�� N�� 1 I L���������������M 

where ������ is the effective concentration of antibodies targeting epitope � and ����� is the actual 

concentration of antibodies targeting epitope �. N$� describes the overlap between epitope O and 

; and is the fraction of antibodies targeting epitope O that can mask epitope ; (and vice versa). 

The effective average dissociation constant ��,�
� is calculated similarly: 

L������/��,�
�������/�,�
�

������/�,�
�
M 	 H 1 N�� N��N�� 1 N��N�� N�� 1 I L�����/��,������/��,������/��,�

M. 

The concentration of bound antigen ���$
���� is then calculated and subtracted from the total 

antigen concentration since bound antigen cannot be seen by B cells. The resulting antigen 

concentration is then scaled such that the fraction of soluble antigen and fraction of antigen on 

the FDC match those fractions before epitope masking is not considered. 

 

Modifications to the original model 

As a summary, the revised model includes three epitopes instead of two epitopes and considers 

three strains instead of two. This manifests in the distribution of naïve B cells’ germline affinities, 

the effective antigen concentration in epitope masking, and the correlated affinity changes in the 

GC. Using multiple epitopes and strains accounts for the diversity in influenza strains, each with 

distinct epitopes that may be conserved with the vaccine strain. By examining the relationships 

between multiple epitopes and strains, we gained general insights into factors that affect the 



number of immunizations needed to achieve a given level of coverage for historical and 

emergent strains, as detailed in the main text. 
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Figure 1. Divergent amino acid relatedness in the ectodomain and receptor binding site 

(RBS) patch of the pandemic influenza HA. (A) The HA ectodomain, where relatedness is 

calculated using the formula "N_matched / N_total";  N_matched is the number of amino acids 

that match between the compared sequences and N_total is the total number of amino acids in 

the aligned sequence. (B) Heat map of HA ectodomain relatedness values for influenza A (H3N2, 

H1N1) and B viruses spanning >100 years (38 HA ectodomain sequences analyzed). (C) The 

RBS patch was structurally identified by four human bnAbs whose paratopes engage the RBS by 

mimicking cell surface sialic acid (CH67, CH67, H2526, 641 I-9) (Schmidt et al., 2015). We 

defined the RBS patch as the viral sialic acid binding residues (black) + the surrounding antibody 

epitope ‘ring’, collectively identified by the peripheral contacts made by the four bnAbs. Amino 



relatedness within the RBS patch is then calculated using the same formula except that the 

residues are now restricted to patch. (D) Heat map of HA RBS patch relatedness values for 

influenza A (H3N2, H1N1) and B viruses spanning >100 years (RBS patch sequences from the 

same 38 HA sequences as in B) 

Figure 2. Sequential immunization with homologous pHA boosts highly unrelated H1N1 

strains. (A) Four year influenza vaccine trial (Nunez et al., 2017). We analyzed HAI elicited 

from 27 subjects that were longitudinally followed and immunized each year with the  vaccine 

strains indicated. Notably these individuals received the same H1N1 component (pandemic 

A/California/07/2009) in each of the four years. (B) Fold change in HAI titer (pre vs 20 days 

post- vaccination) elicited each year and graphed as a function of HA ectodomain relatedness 

between the vaccine strain and the viruses within the HAI panels. Each dot is a single subject at 

the relatedness value: white dots are fold changes for strains from the virus panel; the colored 

dots indicate the vaccine-matched viral strain (relatedness = 1.00). (C) Same data as in (B) only 

now graphed as a function of RBS patch relatedness between the vaccine strain and the viruses 

within the panels. 

Figure 3. Sequential immunization with homologous pHA gradually broadens the response 

within individuals with no initial immune memory/recall to historical strains.  Responders 

(green) versus non-responders (red) within each year is graphed for each H1N1 strain in the HAI 

panel. Responders are defined by having non-increasing fold changes of HAI titers (post-

vaccination HAI titer / pre-vaccination HAI titer; i.e. fold change >1). Non-responders are 

defined by having decreasing fold changes of HAI titers (post-vaccination HAI titer / pre-

vaccination HAI titer; fold change < 1). Because non-responders (red) do not back-boost against 



historical strains in the panel they, by definition, lack imprinted immunity to these viruses that is 

recalled by pHA. In the regression analyses each white dot denotes the proportion of non-

responders for each viral strain. (A) Yearly response for all longitudinally analyzed individuals; 

at right is a linear regression of the proportion of non-responders against over the four year 

vaccine data (P=6e-04). (B) Data for subjects >50 years in age (P=6e-04, linear regression). (C) 

Data for subjects <38 years in age (P=0.0164, linear regression). See also Figure S1 for linear 

regression of the proportion of responders in each age group.  

Figure 4: The influenza HA head is coarse-grained into three epitopes, that are perceived 

with different germline-endowed B cell affinities. (A) Diagram of epitope differences. In the 

right panel, the level of conservation of the three epitopes is depicted using different shapes (not 

very conserved) or similar shapes (relatively conserved) Epitope 1 (dominant epitope on pHA) 

varies is not conserved between the three variants. Epitope 2 (subdominant epitope) is relatively 

conserved between strain 1 (vaccine strain) and strain 2, but not between strains 1 and 3. Epitope 

3 (another subdominant epitope) is conserved between strains 1 and 3, but not between strains 2 

and 3. (B) Germline-endowed affinity distribution of naive B cells. More dominant epitopes have 

a longer high-affinity tail. Epitope 1 is more dominant than epitope 2 and epitope 2 is more 

dominant than epitope 3. Here, the fractions of naive B cells p�  targeting epitope i are p� 	
0.8, p� 	 0.15, p� 	 0.05.  

Figure 5. Antibody broadening via feedback loops within the humoral response. (A) The 

antibody titers against both the vaccine strain and historical strains (strains 2 and 3) increase over 

four immunizations. The antibodies are produced by plasma cells from both the GCs and the 

EGCs. Antibody coverage increases first for strain 2 (after the second immunization) and strain 3 



is engaged after the third immunization. In this simulation, the initial fractions of B cells �� that 

target epitope i are �� 	 0.8, �� 	 0.15, �� 	 0.05. The conservation ��� of epitope 2 between 

strains 1 and 2 and the conservation ��� of epitope 3 between strains 1 and 3 are both equal to 

0.95. (B) The expansion of pathogen-specific IgG antibodies from the first immunization 

significantly increases the antigen concentration on the FDC in the second immunization. This 

allows lower-affinity B cells that target subdominant epitopes to enter GCs and undergo affinity 

maturation. The antigen concentration on the FDC slightly increases from the second to the third 

immunization, allowing more B cells that target the subdominant epitopes to enter GCs and 

undergo affinity maturation. (C) The distribution of memory cells produced in the GCs during 

the first three immunizations. Upon subsequent antigen exposure, these memory cells are 

selected and expanded in EGCs. Thus, they contribute significantly to circulating antibodies and 

increased titers during subsequent immunizations. The first immunization primarily produces 

memory cells that target the dominant epitope (epitope 1), along with some memory cells 

targeting epitope 2. The second and third vaccinations produce an overall greater number of 

memory cells overall bearing higher affinity for the subdominant epitopes (epitopes 2 and 3) than 

the first immunization. (D) Strain 3 is engaged less potently when the initial fractions of B cells 

��  that target epitope i are �� 	 0.8, �� 	 0.18, �� 	 0.02. (E) The titers against strain 2 are 

lower than titers against strain 3 when the conservation of epitope 2 is decreased. Here the 

conservation ���  of epitope 2 between strains 1 and 2 is 0.7 while the conservation ���  of 

epitope 3 between strains 1 and 3 is kept at 0.95. Other values of ��� are explored in Figure S2. 

The fractions of B cells �� that target epitope i are the same as those in Figure 5A.  

Figure 6. Regulation of antibody broadening through epitope masking. (A) Maximum 

antibody titers for the historical strains after the second vaccination, with and without epitope 



masking. Two cases are considered when there is epitope masking: [1] the epitopes are 

absolutely distinct; [2] the epitopes can overlap with each other. The second case is shown here, 

wherein there is 30 % overlap between epitope 1 (dominant) and epitope 2 (subdominant) and 

between epitope 1 (dominant) and epitope 3 (subdominant). Masking increases the titers against 

historical strains, even when there is some overlap between the dominant and subdominant 

epitopes. (B) Maximum antibody titers for the historical strains after the third vaccination, with 

and without masking. After the third vaccination, titers for Variant 2 with epitope masking are 

higher when there is epitope overlap than when the epitopes are distinct. (C)  Relative number of 

memory cells produced with epitope masking. Epitopes are considered to be fully distinct. The 

epitope that is most targeted by the memory cells is also masked the most after the subsequent 

immunization. The dominant epitope is targeted most by Vax 1 memory cells and is masked the 

most in the second immunization. The orange subdominant epitope (epitope 2) and green 

subdominant epitope (epitope 3) are both relatively well targeted by Vax 2 memory cells. 

However, the subdominant epitopes are also masked during the third immunization, so the 

subdominant epitopes lose their advantage compared to the dominant epitope in the affinity 

maturation process after Vax 3. (D) Relative number of memory cells produced with epitope 

masking and overlap. The epitope that is most targeted by the memory cells is masked the most 

in the subsequent immunization. The dominant epitope is targeted most by Vax 1 memory cells 

and is masked the most in the second immunization. The orange subdominant epitope (epitope 2) 

is targeted most by Vax 2 memory cells, although more memory cells target the dominant 

epitope than when the epitopes are fully distinct. Due to the masking of epitope 2 in the third 

immunization, the dominant and green subdominant epitope (epitope 3) are both relatively well 

targeted by Vax 3 memory cells. 
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