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Abstract

Fabry disease, an X-linked lysosomal storage disorder caused by galactosidase alpha (GLA) gene 

mutations, exhibits diverse clinical manifestations, and poses significant diagnostic challenges. Early 

diagnosis and treatment are crucial for improved patient outcomes, pressing the need for reliable 

biomarkers. In this study, we aimed to identify miRNA candidates as potential biomarkers for Fabry 

disease using the KingFisher™ automated isolation method and NanoString nCounter® miRNA detection 

assay.

Clinical serum samples were collected from both healthy subjects and Fabry disease patients. RNA 

extraction from the samples was performed using the KingFisher™ automated isolation method with the 

MagMAX mirVanaTM kit or manually using the Qiagen miRNeasy kit. The subsequent NanoString 

nCounter® miRNA detection assay showed consistent performance and no correlation between RNA 

input concentration and raw count, ensuring reliable and reproducible results. Interestingly, the detection 

range and highly differential miRNA between the control and disease groups were found to be distinct 

depending on the isolation method employed. Nevertheless, enrichment analysis of miRNA-targeting 

genes consistently revealed significant associations with angiogenesis pathways in both isolation 

methods. Additionally, our investigation into the impact of enzyme replacement therapy on miRNA 

expression indicated that some differential miRNAs may be sensitive to treatment. 

Our study provides valuable insights to identify miRNA biomarkers for Fabry disease. While different 

isolation methods yielded various detection ranges and highly differential miRNAs, the consistent 

association with angiogenesis pathways suggests their significance in disease progression. These findings 

lay the groundwork for further investigations and validation studies, ultimately leading to the 

development of non-invasive and reliable biomarkers to aid in early diagnosis and treatment monitoring 

for Fabry disease.      



Introduction

Fabry disease (FD, OMIM 301500) is a rare X-lined lysosomal storage disorder caused by the deficiency 

or malfunction of the enzyme α-galactosidase A(α-gal-A, EC3,2.1.22), resulting in the accumulation of 

globotriaosylceramide (Gb3) and related glycosphingolipids within lysosomes in various cells, including 

capillary endothelial, renal (podocytes, tubular cells, glomerular endothelial, mesangial and interstitial 

cells), cardiac (cardiomyocytes and fibroblasts) and nerve cells [1]. This progressive lysosomal storage 

disorder predominantly affects males and can lead to severe complications in the heart, kidneys, skin, 

eyes, central nervous system, and gastrointestinal system [2]. Due to the lyonization process inactivating 

one X-chromosome, some female patients have milder disease progression or delayed disease onset [3]. 

Despite advancements in FD research, the identification of reliable and specific biomarkers that reflect 

the disease progression and the response to treatment remains a challenge. Traditional methods, such as 

enzyme assays and genetic testing, have limitations in terms of sensitivity, specificity, and the ability to 

reflect clinical outcomes. Thus, there is a critical need for further research to identify and validate more 

useful biomarkers for FD. 

Circulating miRNAs in liquid biopsies, such as serum samples, offer a minimally invasive, easily 

accessible source and are stable in long-term storage at room temperature, variable pH, and multiple 

freeze-thaw cycles, common conditions necessary for biomarker applications [4-7], making them an 

optimal option for identifying disease-specific molecular signatures for FD diagnostics. Current FD 

associated miRNAs have been reported about their key roles in cardiac function[8-10] and kidney disease 

progression[11-13]. However, the complex pathophysiology of FD and the low abundance of circulating 

miRNAs present additional hurdles for biomarker discovery. The NanoString nCounter® assay addresses 

these challenges by offering an image-based multiplex detection of miRNA sequences. Its digital 

counting capability ensures an accurate quantification, while the direct measurement of miRNAs without 

PCR amplification enhances sensitivity, minimizes variability, and avoids potential biases towards 

abundant miRNA from RNA amplification [14, 15]. Furthermore, this platform has received  FDA 510(k) 



clearance and is currently in use for testing the PAM50 gene signature to assess the risk of recurrence in 

breast cancer and patient stratification in postmenopausal women [16, 17]. Therefore, a Nanostring-based 

miRNA assay platform may provide clinical utility. 

Recently, Cammarata et al. have demonstrated the feasibility of using Nanostring assay with manual 

(Qiagen miRNeasy Serum/Plasma kit) miRNA isolation to identify common plasma miRNA profiles in 

FD patients[18]. However, the reported assay process is labor intensive and subject to variations from 

operators in conducting miRNA isolations. As shown in this work, we successfully interfaced the 

Nanostring assay with an automated process for isolation of the total small RNA by leveraging the 

capabilities of a KingFisher™ automation system (MagMAXTM total RNA isolation kit).  The 

combination of the KingFisherTM automation system and NanoString nCounter® assay could accelerate 

the workflow to assess miRNA expression profile in serum samples. Using the improved assay workflow,  

we identified  distinct miRNA signatures associated with the occurrence of disease and the response to 

enzyme replacement therapy (ERT) with a detailed comparison of miRNA profile between manual and 

automation isolations. This established automated assay and procedure are generic and could be readily 

applicable for creating reliable assays to monitor the complex excretion profile of miRNA in any liquid 

biopsies for FD diagnosis, prognosis, and evaluation of treatment outcomes. 

Methods and materials

Patient and control of serum samples

Fabry patient serum samples were obtained from Sanguine Bioscience (Waltham, MA) following the 

Institutional Review Board (IRB) approved protocol (Project number 09286, No. San-BB-02). Healthy 

control serum samples were purchased from Discovery Life Sciences (Huntsville, AL), and individuals 

within a similar age range (±10 years) were selected to match the patient samples (Table 1). The samples 

were collected from December 5, 2017 to November 2, 2022 according to vendor’s documentation. 



Table 1. Demographics of the study population

Manual Method

Total(n=24) Healthy(n=10) Fabry(n=14)

Median (years) 52.5±13.55 51.0±14.23 53.0±13.55
Age

Ranges(years) 21-66 21-65 29-66

Male 12 5 7
Genders

Female 12 5 7

No 15 10 5
Enzyme 

replacement 

treatment (ERT) Yes 9 0 9

Automated Method

Total(n=23) Healthy(n=12) Fabry(n=11)

Median(years) 50.0±14.26 56.5±14.43 47.0±14.68
Age

Ranges(years) 21-75 21-70 31-75

Male 13 4 9
Genders

Female 10 8 2

Enzyme No 12 12 2



replacement 

treatment (ERT) Yes 7 0 7

RNA isolation and purification

Serum samples were thawed on ice and 200 µL of each sample was transferred into new tubes. miRNAs 

were isolated using miRNeasy Serum/Plasma Kit (cat. no. 217184, Qiagen, MD). Some samples were 

alternatively extracted using KingFisherTM Flex Magnetic Particle Processor 96DW with MagMAX 

mirVanaTM Total RNA Isolation Kit (cat. no. 5400630 and A2728, both from ThermoFisher Scientific, 

MA), following the manufacturer’s protocol. For comparison purposes, eight samples were proceeded 

using both manual and machine-based methods. The miRNA concentrations were quantified using 

QubitTM microRNA assay Kits (ThermoFisher Scientific, MA) with QubitTM Flex Fluorometers. 

miRNA expression profiling and data analysis

The miRNA expressions were profiled using NanoString nCounter® with the Human v3 miRNA CodeSet 

kit (CSO-MMIR15-12) with nCounter® miRNA Sample Prep (Mu-MIRTAG-12). The codeset consists 

of 827 unique miRNAs barcodes, including six positive controls, eight negative controls, six ligation 

controls, five spike-in controls (ath-miR-159a, cel-miR-248, miR-254, and osa-miR-414 and 442). 

Additionally, five reference controls (housekeeping mRNAs: RPL10, ACTB, B2M, GAPDH, and 

RPL19) were included. Input material comprised 5 µL of concentrated RNA, and the experiment was run 

according to the manufacturer’s protocol. An illustrated experiment workflow is shown in Fig 1. 

Fig 1. Workflow for Nanostring-based miRNA biomarker assay. (A)The flowchart illustrates the 

overall experimental procedures. The workflow consists of RNA sample preparation steps(blue), 

Nanostring nCounter sample preparation steps(green), and an image analysis step to obtain raw count 

data(orange). (B) The flowchart presents the data analysis steps after receiving the raw data.  



All hybridizations were carried out for 19 hours, and data counts were obtained by scanning on the MAX 

model for 555 fields of view (FOV) per sample. The normalization of data  (RCC file)  was performed 

using nSolver Analysis Software v4.0 (NanoString Technologies, 

https://nanostring.com/products/analysis-solutions/ncounter-analysis-solutions/). Background correction 

was performed by subtracting the geometric mean of negative control counts by sample within 

NanoString nSolver™. Positive control and CodeSet normalization utilized the geometric mean of 

positive controls and the top 100 highly expressed miRNAs probe set according to nSolver™ guidelines. 

Fold change expression differences were calculated using nSolver Ratio data based on normalized count 

data. The data was further filtered for miRNA measured above detection levels in at least 15% of 

samples. Subsequent data analysis was performed using Rosalind (https://nanostring.rosalind.bio/login). 

Rosalind conducts differential expression analysis using the R package limma to obtain fold change 

values and p-values [19]. Heatmaps of differentially expressed miRNAs from Rosalind were scaled and 

generated using Ward’s hierarchical agglomerative clustering method with the fpc R package [20]. 

Volcano plots were created using R packages ggplot2, and ggrepel to customize figure sizes and ranges. 

The cut-off criteria for significance were set at |log2(fold of change)| > 1.5 and p-value < 0.05.  

Prediction and validation of miRNA-Target Interactions

To predict and validate the miRNA-target interactions of the highly differential miRNAs between Fabry 

and healthy control groups, we used MiRWalk (http://mirwalk.umm.uni-heidelberg.de). We employed the 

following default parameters: species human, miRNAID, GeneSymbol, Statistic power: 0.95, Position: 

3UTR. The databases used for prediction were TargetScan, miRDB, and miRTarBase, and only 

interactions listed in all three (plus miRWalk’s own database) were included [21]. 

Gene set enrichment analysis (GSEA) and functional annotation

Gene set enrichment analysis (GSEA) was performed to identify significantly enriched functions of the 

predicted target genes. System analysis, annotation, and visualization of gene function were conducted 

https://nanostring.com/products/analysis-solutions/ncounter-analysis-solutions/
https://nanostring.rosalind.bio/login
http://mirwalk.umm.uni-heidelberg.de/


using the Reactome, the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene ontology 

enrichment analysis. Pathways achieving an FDR (False Discovery Rate)-corrected p<0.05 were 

considered statistically significant. GSEA results were summarized in a bubble plot.

Results

RNA yield and NanoString counts from different isolation methods.

To expedite and improve the sample processing workflow, we compared the manual and automated 

miRNA extraction methods by a correlation analysis by NanoString raw counts and miRNA input 

concentration. The sum of NanoString raw counts derived from the manual method ranged from 19,003-

71,662 with a median of 29,637, whereas the automation method detected raw counts ranging from 

15,860-37,857 with a median of 18,494. The Pearson correlation test R2 value for the overall dataset, 

manual method, and automation method were all lower than 0.3 (overall: 0.21; manual and automation: 

0.056, Fig 2). These results suggest that miRNA input concentration did not significantly influence the 

total NanoString raw counts.

Fig 2. The correlation analysis of total miRNA input concentration and the sum of counts in 

samples from different isolation methods. Pearson correlation with linear regression analysis was 

performed. Mean linear regression is plotted (black straight line).

Furthermore, we analyzed the miRNA detection range from different isolation methods in the same set of 

samples in different cartridges (n=8). On average, 225±29 miRNAs were commonly detected in both 

methods across samples. Additionally, 123±69 miRNAs were exclusively detected in the manual method, 

while 58±40 miRNAs were exclusively detected in the automation method. The variations in individual 

microRNA species were depicted through average counts in both automated and manually isolated 

samples (Fig 3). The normalized counts of each miRNA from different methods were correlated to each 

other in a scatter plot, and the majority of dots aligned with the expected value (assuming no difference 



between manual and automation labeled as a green line in Fig 3). However, a subset of outliers displayed 

higher average counts in the manual method (orange dots closer to the x-axis). Seventy-three percent of 

the total detected miRNAs displayed higher normalized counts in the manual isolation method, while the 

remaining 27% presented higher counts in the automated approach. To identify significantly different 

microRNA species between isolation methods, we conducted a two-tailed Welch’s t-test, paired by the 

patient, comparing normalized counts of either method. Consequently, we identified 14 miRNAs that 

were significantly higher in the manual isolation method compared to the automated isolation method. 

These observations indicate that the profile of detected miRNAs is substantially influenced by the type of 

isolation method.

Fig 3. A scatter plot of normalized counts of both automated and manual isolation methods. The 

normalized counts from the 8 samples that have isolated miRNAs from both methods. A theoretical line 

(green line) indicating normalized counts of miRNAs were similar in both methods. Orange dots 

represent miRNAs displayed higher counts in the manual than in automated methods(p<0.05).

Assay performance and quantification parameters     

To assess method-derived variations, we compared miRNA profiles between healthy and FD groups 

using RNA samples extracted via manual and automated methods. A total of 39 serum samples were 

analyzed, consisting of 21 males and 18 females. Among these, only eight samples were processed using 

both methods. Table 1 provides a summary of the age range, gender distribution, and enzyme replacement 

treatment (ERT) status of the subjects. 

The RNA concentration of manually extracted samples ranged from 1.33-28.6 ng/µL (median of 5.76 ng/ 

µL) while automated samples had lower concentrations ranging from 0.13-0.72 ng/µL (median of 0.47 

ng/µL). To ensure assay quality, positive control linearity, binding density, and ligation efficiency were 

assessed (S1 Fig). Before evaluating these quantification parameters, we defined three levels of 

stringency for the background as the limit of detection (LOD): Low LOD=geometric mean of all negative 



controls; Medium LOD = geometric mean of negative control+2*standard deviation; High LOD = 

2*(Medium LOD). The three levels of LOD in this assay were 21, 36, and 72 for the manual method and 

21, 35, and 70 for the automated method, respectively. 

In the manual method, control raw counts ranged from 91 to 31,663, while the automated method showed 

control raw counts ranging from 114 to 33,665 (S1A and 1D Figs). Correlation analysis of the raw counts 

and the positive control concentration (Pos_A-F) exhibited significant linearity with R2≥0.95 (S1B and 

S1E Figs, p<0.0001) in both methods. In contrast, binding density showed no correlation (R2≤0.3) with 

RNA input concentration (S1C and S1F Figs). The linear curve of the positive controls was used for 

assuring assay quality and the Low LOD was used as the criterion to assess the detection range of 

miRNAs. 

Ligation efficacy was evaluated using three positive and three negative synthetic RNA controls. Ideally, 

the ligation-negative control should yield counts in the Low and Medium LOD range, while the ligation-

positive should yield counts significantly higher than all three LOD levels. In the manual method, all 

ligation-negative controls were lower than Medium LOD, with an average of 4 out of 24 samples falling 

below the Low LOD (S1C Fig). In the automated method, negative controls were lower than Medium 

LOD in the majority of samples, except one, with an average of 6 out of 23 samples below the Low LOD 

(S1F Fig). All ligation-positive controls were higher than the Low LOD, except one sample in the manual 

method and eight samples in the automated method, which were lower for LIG_POS_C. When compared 

to the Medium LOD, the majority of samples were higher, with 1 or 3 out of 24 samples in the manual 

method and 7 or 9 samples in the automated method falling below the Medium LOD. A similar trend was 

observed for the High LOD, with an average of 4 out of 24 samples in the manual method and 8 out of 23 

samples in the automated method below the High LOD. These quality control results provide essential 

information regarding assay performance and define criteria for normalization and quantification in data 

analysis. 



Differential miRNA detection ranges and expression profiles

To investigate the detection range of miRNA in different study groups isolating from either manual or 

automated methods, we employed a Low LOD threshold, with miRNAs considered detectable if present 

in at least 15% of samples. Across the serum sample, a total of 501 miRNAs were detected using the 

manual method, and 492 miRNAs were detected using the automated method. In the manual method, 100 

miRNAs were exclusively detected in the Fabry group, 4 miRNAs were exclusively detected in the 

healthy group, and 397 were detected in both groups (Fig 4A). The automated method revealed 24 

miRNAs solely detected in the Fabry group, 112 miRNAs exclusively detected in the healthy group, and 

356 miRNAs detected in both groups (Fig 4B). Notably, 15 highly differential miRNAs were identified in 

the manual method, comprising 9 downregulated (green dots) and 6 upregulated (red dots) miRNAs that 

met the predefined criteria (Fig 4C). Among these 15 miRNAs, only 4 were specific to the Fabry group, 

while the remaining 11 miRNAs were commonly detected in both groups. In contrast, the automated 

method identified 29 highly differential miRNAs, consisting of 8 downregulated (green dots) and 21 

upregulated (red dots) miRNAs (Fig 4D). Of these, only 1 miRNA was unique to the Fabry group, 3 

miRNAs were unique to the healthy group, and the other 25 miRNAs were expressed ubiquitously in both 

groups.  

Fig 4. The miRNA detection range and highly differential miRNAs in healthy and Fabry serum 

samples from different isolation methods. (A and B) Venn diagram displays the detection range of the 

Fabry(yellow) and healthy(blue) groups. The green circle indicates the highly differential miRNAs within 

either Fabry or commonly expressed miRNAs regions. (C and D) Volcano plot shows log2 fold change(y-

axis) and p-value(x-axis) across miRNAs. Colors indicate the differential level of the miRNA, either 

downregulating(green), or upregulating(red).

The overall distribution of differentially expressed miRNAs was visualized using a Volcano plot, with a 

significance threshold set at p-value<0.05 and |log2 foldchange|>1.5. In both the manual and automated 



methods, the sample dots were more densely populated in the positive region of the x-axis than the 

negative (Figs 4C and 4D). In the comparison between the manual and automated methods, we observed 

different miRNA expression patterns. Specifically, in the manual approach, six miRNA were found to be 

significantly elevated in Fabry samples compared to healthy samples (miR-509-3-5p, miR-612, miR-361-

3p, let-7a-5p, miR-130a-3p, miR-374a-5p), whereas nine miRNA showed significant downregulation 

(miR-644a, miR-590-5p, miR-548q, miR-496, miR-2116-5p, miR-4536-5p, miR-30d-5p, miR-549a, 

miR-1253). In the automated method, 14 miRNA were elevated in the Fabry group compared to healthy 

controls (miR-665, miR-412-3p, miR-30d-5p, miR-1270, miR-1295a, miR-625-5p, miR-362-5p, miR-

181a-2-3p, miR-184, miR-542-3p, miR-933, miR-548ah-5p, miR-1244, miR-574-3p), while 8 miRNA 

were reduced (miR-612, miR-597-5p, let-7b-5p, miR-1253, miR-451a, miR-223-3p, miR-937-3p, miR-

3605-5p) . Notably, miR-30d-5p, miR-612, and miR-1253 were consistently detected in both isolation 

methods. Both the Venn diagram and volcano plot results suggested that FD may considerably increase 

the number of detectable miRNA expressions. 

In the heatmap and hierarchical clustering analyses, the Fabry group samples were separated into three 

clusters when compared to the healthy group. Specifically, the Fabry samples, F1 and F3, obtained via the 

manual method exhibited a miRNA expression pattern similar to the healthy group and were distant from 

the other Fabry samples (Fig 5A). The middle cluster (F4, F5, F2, and F13) displayed a mixed miRNA 

expression pattern between disease and healthy groups. The remaining samples generally demonstrated a 

distinct miRNA expression pattern associated with FD. A similar clustering pattern was observed in the 

sample obtained via the automated method. Mainly, F21 showed a miRNA expression pattern similar to 

the healthy group, while F22, F23, F24, and F25 exhibited an intermediate miRNA pattern, and the final 

group displayed a more pronounced Fabry-specific miRNA expression pattern (Fig 5B). After decoding 

the background information of the samples, we observed that all non-ERT patients were clustered in the 

first two groups, which exclusively included female patients above age 53. Additionally, samples in these 



two groups consisted of male patients who received ERT, with ages either below or above 53. The results 

imply that miRNA expression profiles might be influenced by age, gender, and response to ERT. 

Fig 5. Hierarchical clustering heatmap for healthy and Fabry serum samples derived from different 

isolation methods. Hierarchical clustering heatmap of differential miRNAs (|log2 fold of change|>0.5 

and p-value<0.05, total 42 miRNAs included) presents in each healthy control and Fabry patient serum 

samples. Colors encoded the up-(red) and down-(blue) regulated miRNAs.   

Prediction and annotation of a potential target of differentially 

expressed miRNAs 

To identify potential target genes associated with highly differential miRNAs, we utilized miRWalk 

integrating TargetScan, miRDB, and miRTarBase to cross-reference miRNAs-target interactions. In the 

manual method, we identified a total of 211 miRNAs-target interaction sites involving miR-30d-5p, miR-

130a-3p, miR-374a-5p, and let-7a-5p (Fig 6A). Similarly, in the automated method, we found 314 

miRNAs-target interaction sites involving miR-18a-5p, let-7b-5p, miR-30d-5p, miR-665, miR-223-3p, 

miR-362-5p, and miR-495-3p (Fig 6B). 

Fig 6. Predicted target genes and function enrichment analysis. (A and B) Node graphs display the 

miRNA (blue dot)-target (orange dot) interactions. Filters for target gene prediction were seed sequences 

mapping to the 3’ untranslated regions (UTRs), a p-value of 0.05, and only targets identified by three 

different algorithm-TargetScan, miRDB, and miRTarBase. (C and D) The bubble dot plot represents the 

fold enrichment (x-axis), the number of genes (bubble size), and the FDR value (gradient colors) in each 

GO and KEGG biological process terms (y-axis). Representative bubbles were enriched at FDR<0.05.

To gain insight into the biological function of the identified miRNA-associated target gene in Fabry 

serum samples, we conducted gene set enrichment analysis in miRWalk, including GO (Biological 

Process, Molecular Function, and Cell Component) and KEGG. In the manual-method-derived Fabry 



samples (Fig 6C), gene ontology analysis revealed significant enrichment in pathways such as TGF-β 

binding and receptor signaling, SMAD binding, PI3K-Akt signaling, and phosphatidylinositol-3-

phosphate binding, which are known to be associated with FD [22, 23]. Similarly, gene set enrichment 

analysis on the automated-method-derived Fabry samples(Fig 6D) showed enrichment in pathways 

related to RUNX1 and RUNX2 regulations and activities, heart development, negative regulation of 

angiogenesis, and MAPK signaling pathways, which have been reported to be associated with various 

angiogenesis-related disorders such as cancer, cardiomyopathy, nephropathy, and retinopathy[24-27]. In 

addition to angiogenesis-related signals, the automated- method-derived Fabry samples displayed 

enrichment in the Notch signaling pathway, which is thought to be involved in kidney fibrosis in the FD 

[28]. These findings highlight the possibility that upregulated miR-30d-5p and downregulated let-7a-5p or 

let-7d-5p are associated with angiogenesis-related signaling pathways in various aspects.   

miRNAs expression profiles with and without enzyme replacement 

therapy (ERT)

To further evaluate the miRNA expression patterns between ERT-treated and non-ERT-treated Fabry 

patients, we focused on highly differentially expressed miRNAs identified from the comparison between 

healthy and non-ERT-treated Fabry patients and compared their expression level with the ERT-treated 

group. In the manual method, we identified a total of 29 highly differential miRNAs (|log2 fold 

change|>0.5 and p-value<0.05). Among these, 21 miRNAs displayed expression levels similar to those of 

the healthy group, indicating a potential recovery of their expression in response to ERT. Conversely, 

eight miRNAs showed no significant change compared to the non-ERT treated group (representative 

miRNAs, Fig 7A). Similar trends were observed with the automated method (representative miRNAs, Fig 

7B). Employing the previously established highly differential criteria (|log2 fold change|>1.5 and p-

value<0.05), we identified 21 highly differential miRNAs. Out of these, 17 miRNAs presented a tendency 



to approach the expression levels observed in the healthy group upon ERT treatment, whereas 4 miRNAs 

showed no significant change. 

Fig 7. ERT impacts on the differentially expressed miRNAs associated with the Fabry pathology. 

Representative miRNAs were significantly differential between Healthy and non-treated Fabry group. 

Statistical comparison of mean performed by nonparametric T-test with p value<0.5*, 0.01**, 0.001***, 

0.0001****.

Upon reviewing the relevant literature, we found that some of these differentially expressed miRNAs 

have known involvement in processes related to vascular formation, autophagy, and muscle 

differentiation [29-36]. The ERT improved the expression of most  of these differential miRNAs toward 

the levels observed in the healthy group. The result suggests that these miRNAs could potentially serve as 

candidates to monitor disease progression and the effectiveness of therapeutics.       

Discussions

In this study, we investigated the impact of different isolation methods on miRNA expression profiles in 

Fabry patients using the NanoString nCounter® platform. We found that the isolation method did not 

significantly affect the assay performance and sum of NanoString raw counts. However, it did have an 

impact on the type of miRNAs detected and the list of highly differential miRNAs in the comparison 

between Fabry patients and healthy controls. Despite these differences, both methods consistently 

demonstrated that serum from Fabry patients presented greater miRNA diversity and more clustered 

miRNA expression profiles according to gender, age, and ERT status compared to the healthy control 

group, even with the divergence in the list of highly differential miRNA. These highly differential 

miRNAs are likely involved in a variety of pathways related to vascular formation, autophagy machinery, 

muscle homeostasis, and differentiation pathways [8, 9, 37-41]. 



The enrichment analysis provided quantitative evidence that the hub of genes derived from the highly 

differential miRNAs, regardless of the isolation method used, regulates different aspects of angiogenesis 

signals. Notably, previous research has linked the malfunction of TGF-β, PI3K, and Notch to Fabry’s 

disease nephropathy [1, 42, 43]. Moreover, we found that the majority of these differential miRNA 

expression levels could be altered by the ERT status. Therefore, these highly differential miRNAs could 

serve as a potential biomarker panel to track disease progression and treatment response as long as the 

results are obtained from the same isolation method. 

A similar Fabry biomarker discovery study conducted by Giuseppe Cammarata et al. employed the same 

Qiagen miRNA isolation kit and NanoString nCounter® platform (v2 instead of v3 in our study)[18]. 

They identified 18 highly differential miRNAs (p-value<0.05, |log2 fold of change|≥1.5) when compared 

to healthy controls. In the comparison of our results (the manual method part), two miRNAs, miR-126-3p 

and miR-146a-5p, were commonly identified in both studies, but the value of log2 fold of change was 

smaller and regulating directions (up and down) were opposite in our results. Additionally, both studies 

identified miR-199 and miR-361, let-7, but the subtype (-3p or -5p and a or b) and the regulating 

directions were different. These inconsistencies might result from the demographics of the sample age 

and gender. Fabry’s disease is an X-linked genetic disorder, and female patients often reveal milder 

symptoms than male patients. Consequently, the clinical manifestation of disease limits the availability of 

samples, and in our study, all non-ERT treated patient serum samples were obtained from female patients 

above the age of 53. Age is known to contribute to the heterogeneity of the serum miRNA profile in 

Fabry patients, and it also impacts miRNA expressions in healthy individuals. For instance, we observed 

a strong correlation between miR-181a-5p and miR-499b-5p with age (R2=0.4988, p=0.0224 and 

R2=0.588, p=0.0097, S2 Fig). Thus, the differential miRNAs identified may vary depending on the 

sample resource, but ultimately, these miRNAs are likely to target pathways associated with vascular 

differentiation or formation.        



In addition to the biomarker discovery, we also demonstrated possible parameters that could impact assay 

performance in the NanoString nCounter® assay when implementing an automated RNA isolation 

method. The variation in miRNA profiles was mainly due to the divergence of the isolation method rather 

than the RNA input concentration (Fig. 2). Similar results were observed in several studies on miRNAs in 

serum. For instance, Marjorie Monleau et al. compared miRNA profiles using different RNA isolation 

kits and found that the extraction procedure impacted the detection range and G/C composition of 

miRNAs [44]. Similarly, Ryan Wong et al. evaluated the detection range of miRNAs from two different 

RNA isolation kits (MagnaZol RNA and Qiagen kits) for RNA-sequencing and found differences in the 

reads mapping to miRNAs and the diversity of detected miRNAs [45]. Moreover, the choice of RNA 

fraction used in the miRNA microarray and bead array-based assays can also impact miRNA profiles [46, 

47]. While there may be discrepancies in the miRNA detection range and the list of highly differential 

miRNA between automated and manual isolation methods, it is encouraging to note that a subset of 

miRNAs was consistently identified from both methods. This overlap adds robustness to the finding and 

strengthens the validity of the identified miRNAs as potential biomarkers for FD. Furthermore, the highly 

differential miRNA lists obtained through both methods demonstrated enrichment in angiogenesis-related 

pathways, which aligns with the biological context of the disease manifestation. The enrichment analysis 

provides important insights into the potential functional roles of these miRNAs in the pathogenesis of FD, 

particularly in relation to vascular formation and angiogenesis.

The current study has some limitations that need to be addressed. First, the small sample size and 

imbalanced gender and age distribution could introduce bias. However, the rarity and X chromosome-

dependent nature of FD poses significant challenges in recruiting sufficient sample sizes with equally 

distributed genders and ages. Therefore, the selection of healthy control samples is crucial to match the 

disease group and reduce the impact of age on miRNA expression profiles during comparisons. Second, 

no single RNA kit can perfectly preserve all types of miRNAs for the experiment, resulting in a bias of 

miRNA detection range and the variation of target genes and pathways. Experiments performed in 



different cartridges and dates add another layer of variation within the data. Data comparisons should be 

performed optimally within the same experiment process to minimize the isolation method and batch bias. 

Although different isolation methods may yield different lists of highly differential miRNAs, the sample 

hierarchical clustering and functional analysis can still identify disease-associated pathways. Finally, 

there is no one-fit-for-all target prediction platform. Currently, most computational algorithms use classic 

seed pairing principles, which target-to-seed sequences within the 3’ untranslated regions (UTRs) of 

mRNA. However, miRNA can bind to regions beyond the 3’ UTRs, and seed base-paring does not 

necessarily need to be perfect, as it can be complemented by additional 3’ compensatory base-paring [23, 

48-52]. To overcome the risk of over-prediction, we cross-validated computationally predicted miRNA-

target interactions with miRTarBase, a database of experimentally validated interactions [53]. 

This study highlights the potential of automating the miRNA isolation process with the NanoString 

nCounter® assay for FD biomarker discovery. The implementation of this automated workflow offers 

several advantages over traditional manual methods. Firstly, it effectively reduces technical variations 

arising from hands-on experiment procedures, thereby enhancing the reliability and reproducibility of 

miRNA expression data. Moreover, the automation of the process reduces labor time, making it feasible 

to process a large number of samples simultaneously. 

One potential method modification that can be considered is the choice of magnetic beads used in the 

RNA isolation protocol. Currently, magnetic beads-based RNA isolation protocol is specialized for total 

RNA [54]. However, it may be beneficial to develop magnetic beads that specifically target small RNAs 

to further enhance the isolation efficiency and accuracy. Such modification can potentially improve the 

miRNA detection range and better concordance between isolation methods. 

In conclusion, our results demonstrated that an automated workflow for miRNA isolation with 

NanoString nCounter® assay could identify a panel of miRNAs targeting similar hubs of angiogenesis 

genes as the manual method. These miRNAs can potentially serve as biomarkers for diagnosis, prognosis, 



surveillance, and even in therapeutic applications. The workflow is applicable to investigate miRNA 

expression signatures associated with other diseases for biomarker studies.    
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Supporting information

S1 Fig. Assay performance and quantification parameter. A and D) Correlation analysis between raw 

counts (Log2) and positive control concentration (Log2. fm). A Simple linear regression of R2 was 

calculated for the data. B and E) Correlation analysis between binding density and RNA input 

concentration(ng). Pearson correlation with linear regression analysis was performed. Mean linear 

regression is plotted (black straight line) with 95% confidence intervals (dashed line). C and F) Digital 

counts (Log2) are shown for all ligation controls. Average Low LOD, Medium LOD, and High LOD 

thresholds calculated for all negative controls are highlighted in shades of blue.

S2 Fig. Age impacts the miRNAs expression profile in healthy subjects. The association between age 

and miRNAs expression was performed by Person Correlation Coefficient. Both P values were lower than 

0.05.
















