
  

 

Abstract—Arterial blood pressure (ABP) and 
photoplethysmography (PPG) waveforms contain valuable 
clinical information and play a crucial role in cardiovascular 
health monitoring, medical research, and managing medical 
conditions. The features extracted from PPG waveforms have 
various clinical applications ranging from blood pressure 
monitoring to nociception monitoring, while features from ABP 
waveforms can be used to calculate cardiac output and predict 
hypertension or hypotension. In recent years, many machine 
learning models have been proposed to utilize both PPG and 
ABP waveform features for these healthcare applications. 
However, the lack of standardized tools for extracting features 
from these waveforms could potentially affect their clinical 
effectiveness. In this paper, we propose an automatic signal 
processing tool for extracting features from ABP and PPG 
waveforms. Additionally, we generated a PPG feature library 
from a large perioperative dataset comprising 17,327 patients 
using the proposed tool. This PPG feature library can be used to 
explore the potential of these extracted features to develop 
machine learning models for non-invasive blood pressure 
estimation. 

I. INTRODUCTION 

Arterial blood pressure (ABP) serves as a fundamental 
hemodynamic parameter widely used to monitor and guide 
therapeutic interventions, especially in critically ill patients [1, 
2]. The ABP waveform contains rich information about the 
cardiovascular system, including heart rate, systolic blood 
pressure, diastolic blood pressure, and mean arterial pressure 
[3]. On the other hand, Photoplethysmography (PPG), also 
known as the pulse oximetric wave, is a non-invasive method 
primarily employed in anesthetic monitoring for assessing 
blood oxygen levels (SaO2) [4]. The PPG waveform also 
carries rich information about cardiac activity and 
cardiovascular condition [5]. A variety of wearable devices 
based on PPG have been proposed to monitor heart rate, 
including smartphones and smartwatches [5]. 

In the context of analyzing ABP and PPG waveforms, a 
cardiac cycle is defined by five key points: systolic phase 
onset, systolic phase peak, dicrotic notch, diastolic phase 
peak, and diastolic phase endpoint (see Fig. 1). These key 
points serve as critical landmarks for extracting valuable 
features that have been used in various clinical applications. 
For example, as mentioned in [6], the duration from systolic 
phase onset to dicrotic notch, known as systolic phase 
duration, in the ABP waveform, can be used to monitor 
cardiac function. Additionally, as noted in [7], changes in 
dicrotic notch-based features, such as dicrotic notch amplitude 
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and the systolic phase duration, often occur early in the 
vascular disease course and may help with early recognition. 
In PPG waveforms, the stiffness index, which is the ratio of 
the subject's height to the duration between systolic phase 
peak and diastolic phase peak, has shown a relationship with 
the risk of coronary heart diseases, such as hypertension and 
diabetes [8, 9]. Moreover, the reflection index, which is the 
ratio of diastolic phase peak amplitude to systolic phase peak 
amplitude relative to systolic phase onset, serves as a valuable 
indicator for vascular assessment [8,10]. Additionally, the 
augmentation index, which is the ratio of the difference 
between systolic phase peak and diastolic phase peak 
amplitudes to the amplitude of systolic phase peak (with 
amplitudes relative to systolic phase onset), tends to increase 
in older individuals and those with cardiovascular disease 
[8,11]. 

Many research groups have proposed machine learning 
models for non-invasive and continuous blood pressure 
measurement based on PPG waveform features as reported in 
[12,13]. Additionally, Hatib et al. [14] recently introduced a 
machine learning algorithm based on ABP features to predict 
hypotension.  

These medical applications of PPG and ABP features 
clearly emphasize the importance of accurately detecting all 
five key points within a cardiac cycle in these waveforms, as 
they form the foundation for feature extraction and subsequent 
clinical applications. The use of derivatives (1st and 2nd) of 
ABP and PPG waveforms is a common method for detecting 
key points within a cardiac cycle in these waveforms [15]. 
However, the sensitivity of signal derivatives to noise presents 
a significant challenge for accurate detection of these key 
points, potentially resulting in the extraction of inaccurate 
features. 

Moreover, despite the growing significance of PPG and 
ABP features in medical applications, researchers currently 
lack a standard library of these features. This absence limits 
the research community's collective ability to thoroughly 
explore their clinical utility in healthcare. 

 
Fig. 1. ABP cardiac cycle with all five key points: Systolic phase onset (SPO), 
Systolic phase peak (SPP), Dicrotic notch (DN), Diastolic phase peak (DPP), 
and Diastolic phase endpoint (DPE). 
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The main contributions of this paper are divided as follows: 

• This study presents a signal processing tool based 
on the iterative envelope mean (IEM) method [16], 
that can detect all key points within cardiac cycle 
in ABP and PPG waveforms and can be used for 
extracting features from these waveforms.  

• A PPG feature library (632 features/ cardiac cycle) 
along with simultaneous systolic blood pressure, 
diastolic blood pressure, and mean arterial 
pressure values extracted from corresponding 
cardiac cycles in the ABP waveform, was obtained 
from the large perioperative MLORD dataset 
comprising 17,327 patients [17], using the 
proposed tool. 

II. METHODS  

The process of detecting the temporal location of all five 
key points within a cardiac cycle in ABP/PPG signals and 
extracting features using these identified key points is referred 
to a signal processing tool for extracting features from ABP 
and PPG waveforms. The key points were detected using the 
iterative envelope mean method [16]. We recently introduced 
the iterative envelope mean fractal dimension filter for the 
separation of pulmonary crackles from normal breath sounds 
[16]. In this study, the concept of the iterative envelope mean 
(IEM) method is adapted for detecting the temporal location 
of all five key points within a cardiac cycle in ABP and PPG 
waveforms, serving as critical landmarks for feature 
extraction in these waveforms. The process is shown 
schematically in Fig. 2. The signal processing tool was 
developed using PYTHON programming language.   

 
Fig. 2. Block diagram of the signal processing tool using iterative envelope 
mean method for feature extraction.                

A. Pre-processing 
The input consists of 4-s window containing ABP or PPG 

waveform. Windows that exhibit artifacts are excluded based 
on the following criteria: any window containing '0' or 
negative values and having a number of peaks less than 3 or 
more than 10, exceeding 75th percentile of the 4-s window 
amplitude. After artefacts removal a 4th-order Butterworth 
low-pass filter with a cutoff frequency of 16 Hz is applied to 
the 4-s input window to eliminate high-frequency noise. 
Additionally, the filtered signal is normalized using Eq. 1. 

𝑥!"#$(𝑛) =
𝑥(𝑛) − 𝑥$%!
𝑥$&' − 𝑥$%!

 
(1) 

 

where 𝑥(𝑛) represents the input signal, n is the sample index, 
𝑥$%! is the minimum value of the input signal, 𝑥$&'	is its 
maximum value, and 𝑥!"#$(𝑛) denotes the normalized input 
signal. 

 
Fig. 3. An example of the IEM method; (a) 4-s window of ABP input signal, 
(b) IEM method non-stationary component, and (c) IEM method stationary 
component. SPO: Systolic phase onset; SPP: Systolic phase peak; DN: 
Dicrotic notch; DPP: Diastolic phase peak; DEP: Diastolic end point. 

B. Iterative Envelope Mean Method 

The IEM method decomposes the signal into its non-
stationary and stationary components [16]. A 4-s window of 
the ABP input signal is shown in Fig. 3 (a). The IEM method 
procedure for a given input signal 𝑥(𝑛) can be summarized as 
follows: 

Initially, the input signal is smoothed and its first and 
second derivatives are calculated using the Savizky-Golay 
(SG) family filter. The SG filter parameters used here are 
degree of fitting polynomial 𝑝( =4, number of coefficients 
𝑛)	=25 and order of derivation (𝑑") =0, 1 and 2 for smoothing 
the input signal, and for estimating the first and second 
derivatives of that smoothed signal, respectively. Note that as 
mentioned in [16] the number of coefficients 𝑛), is 
approximately equal to the one to two times the half width of 
the shortest duration feature of interest in the signal. In the 
case of ABP/PPG signal the length of a cardiac cycle is 
approximately 0.8 s and the distance between two consecutive 
key points is 0.2 s. In our study, the sampling frequency is 
256, therefore the half width is 25 samples and the value of 
𝑛) is equal to 25.  

Now, the upper and lower envelopes are calculated using 
the coordinates of the smoothed input signal at the location of 
the first derivative local maxima and minima, respectively. 
The first derivative local extrema are calculated and classified 
as maxima and minima using the sign changes over the second 
derivative of the smoothed input signal. Then, an envelope 
mean value is determined by averaging the upper and lower 
envelopes of a smoothed input signal (Eq. 2).  

𝑚*(𝑛) =
𝑈𝑃+!,!(𝑛) +	𝐿𝑊+!,!(𝑛)

2  
(2) 

where n is the sample index in the input signal i.e. n =1, 2, 
…., N and l is the iteration number where l=1, 2,…, L. 

The estimated envelope mean value is then subtracted from 
the original input signal and the resulting signal 𝑅*(𝑛) is used 
as the input for subsequent iterations.   
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Fig. 4 Graphical user interface (GUI) for key points detection within a cardiac 
cycle. 

𝑅*(𝑛) = 𝑥*(𝑛) −𝑚*(𝑛) (3) 

where 𝑥*(𝑛) is the input signal at iteration l. 

The iteration process ends when the stopping criterion is 
met (Eq. 4), at iteration L. 

𝑆𝑇𝐶* = |𝐸{𝑅*-./ (𝑛)} − 𝐸{𝑅*/(𝑛)}| < 𝛽,			1 > 𝛽 > 0 (4) 

where E{.} denotes the expected value and has an initial 
value of 𝑅*-. = 0. In this study, we have used accuracy level 
𝛽 = 0.1, and note that the IEM method employs the identical 
stopping criterion to that specified in [16,18]. 

After the last iteration (𝐿) the IEM method provides an 
estimate of the non-stationary component (𝑁𝑆𝑇𝑆(𝑛)) of the 
input signal (Eq. 5). Additionally, by summing up the 
envelope means from each iteration, it yields an estimate of 
the stationary component (𝑆𝑇𝑆(𝑛)) of the signal (Eq. 6). 

𝑁𝑆𝑇𝑆(𝑛) = 𝑅0(𝑛) (5) 

𝑆𝑇𝑆(𝑛) =A𝑚*

0

*1.

(𝑛) 
(6) 

The non-stationary and stationary components after 
applying the IEM method are shown in Fig. 3(b) and (c), 
respectively. Although, the IEM method can reveal all key 
points within a cardiac cycle in its non-stationary component, 
several further steps are required for accurately locate the 
temporal location of these key points within a cardiac cycle in 
the non-stationary component. Challenges arise due to 
pressure reflections in the arterial system [19] and non- 
physiological oscillations in PPG and ABP waveforms, 
introducing multiple valleys within the cardiac cycle in NSTS 
that may lead to misinterpretation. To address this concern and 
precisely locate key points within a cardiac cycle, the 
following conditions are applied: (1) dicrotic notch and 
diastolic phase peak key points must be at least 0.1 s (25 
samples) away from systolic phase peak and diastolic phase 
endpoint key points. (2) In the NSTS, the y-axis value for 
systolic phase peak point and diastolic phase peak point must 
be greater than zero and for systolic phase onset, dicrotic 
notch, and diastolic phase endpoint valleys, it must be less than 
zero.  

C. Data 
A large perioperative dataset comprising 17, 327 patients 

(MLORD dataset) who underwent surgeries between 2019 and 
2022 at the David Geffen School of Medicine at the University 
of California Los Angeles is used for the analysis [17]. The 

MLORD dataset includes both clinical data and waveform 
data. Clinical data were collected from Electronic Health 
Records (EHR), including Epic (Verona, WI, USA), and 
Surgical Information Systems (Alpharetta, GA, USA). The 
waveform data were collected in the operating room directly 
through the Bernoulli data collection system 
(Cardiopulmonary, New Haven, CT, USA) [17]. The 
waveform data spans more than 72,264 hours in time and is 
7.6 TB in size, comprising various sampled digital 
physiological waveforms, such as PPG, ABP, and 
electrocardiogram. We refer readers to [17], for the detailed 
description of the MLORD dataset. 

In the MLORD dataset, out of 17,327 patients, 4901 patients 
have ABP waveforms, 17170 patients have PPG waveforms, 
and 4893 patients have both ABP and PPG waveforms. In this 
study, we utilized the 4893 patients having both ABP and PPG 
waveforms. The sampling frequency of the ABP and PPG 
waveforms was 256 Hz. It is important to note that marking 
the temporal location of key points on all cardiac cycles as a 
reference is not feasible due to the dataset's large size. 
Additionally, in some cases, either the dicrotic notch or 
diastolic phase peak is less pronounced, especially in PPG 
waveforms, making it difficult to establish their temporal 
location as a reference.  

Therefore, to assess the performance of the proposed tool in 
terms of detecting key points within a cardiac cycle, 1000 4-s 
windows were randomly selected from both the ABP and PPG 
waveforms, where all five key points could be observed within 
a cardiac cycle. The ABP windows contained 3420 cardiac 
cycles, and the PPG windows consisted of 3440 cardiac cycles. 
An experienced researcher marked the key points within these 
cardiac cycles using the 'find_peaks' function from the scipy 
PYTHON package. To ensure accuracy, the marking was 
validated by an engineer and an anesthesiologist. They 
conducted a visual examination of marked ABP and PPG 
windows.  

Moreover, to create a feature library we utilized 1,487,955 
PPG cardiac cycles and an equal number of ABP cardiac 
cycles from 4893 patients with having both PPG and ABP 
waveforms in the MLORD dataset.  

D. Performance Evaluators 
To evaluate the performance of the tool in terms of key 

points detection, three parameters: sensitivity (SE), positive 
predictive value (PPV), and F-score (𝐹.) are used, as shown 
in Eq. (7), Eq. (8), and Eq. (9), respectively. 

Table 1 
Overall performance of the signal processing tool for detecting all key points 
within CC in ABP and PPG waveforms. 

 
Key points 

ABP waveform 
(NOCC= 3420) 

PPG waveform 
(NOCC= 3440) 

SE 
(%) 

PPV 
(%) 

𝑭𝟏 
(%) 

SE 
(%) 

PPV 
(%) 

𝑭𝟏 
(%) 

Systolic phase onset 100 99.25 99.62 100 99.19 99.59 

Systolic phase peak 100 99.36 99.68 100 99.22 99.61 

Dicrotic notch 100 99.02 99.51 100 98.53 99.26 

Diastolic phase peak 100 99.33 99.66 100 99.10 99.55 

Diastolic end point 100 99.18 99.59 100 99.16 99.58 

NOCC: Number of cardiac cycles. 
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                                      (a) 

 
                                (b)            

Fig. 5. PPG cardiac cycle features; (a) Duration features, (b) Systolic rise phase width and overall decay phase width features. 

Table 2 
Duration features (n1=10) description table.

Feature 
index 

Feature symbol Description 

1 PPG_D_SPO_wrtSPP Duration of PPG cardiac cycle systolic phase onset point with respect to systolic phase peak 

2 PPG_D_SPO_wrtDN Duration of PPG cardiac cycle systolic phase onset point with respect to dicrotic notch 

3 PPG_D_SPO_wrtDPP Duration of PPG cardiac cycle systolic phase onset point with respect to diastolic phase peak 

4 PPG_D_SPO_wrtDPE Duration of PPG cardiac cycle systolic phase onset point with respect to diastolic phase end point 

5 PPG_D_SPP_wrtDN Duration of PPG cardiac cycle systolic phase peak point with respect to dicrotic notch 

6 PPG_D_SPP_wrtDPP Duration of PPG cardiac cycle systolic phase peak point with respect to diastolic phase peak 

7 PPG_D_SPP_wrtDPE Duration of PPG cardiac cycle systolic phase peak point with respect to diastolic phase end point 

8 PPG_D_DN_wrtDPP Duration of PPG cardiac cycle dicrotic notch point with respect to diastolic phase peak 

9 PPG_D_DN_wrtDPE Duration of PPG cardiac cycle dicrotic notch point with respect to diastolic phase end point 

10 PPG_D_DPP_wrtDPE Duration of PPG cardiac cycle diastolic phase peak point with respect to diastolic phase end point 

𝑆𝐸 =	
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁) 
(7) 

𝑃𝑃𝑉 =	
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃) 
(8) 

𝐹. = 2 ×
𝑆𝐸 × 𝑃𝑃𝑉
𝑆𝐸 + 𝑃𝑃𝑉 (9) 

where TP stands for the number of true positives, FN for 
the number of false negatives, and FP for the number of false 
positives. Therefore, SE indicates the fraction of true (marked 
by experienced researcher) key points detected by the tool. 
PPV is the fraction of points assigned as key points by the tool 
which are true key points, and F1 is the harmonic mean of SE 
and PPV, commonly referred as a measure of the overall 
performance. Note that a threshold 8 ms (2 samples) was used 
to admit the proposed tool results as TP or reject them as FP 
or FN [20]. 

III. RESULTS AND DISCUSSION 

A. Key points detection 
 The performance of the tool for detecting all five key points 
within a cardiac cycle in ABP and PPG waveforms is 
presented in Table 1. From Table 1, it can be observed that 
the proposed tool had, on average, a sensitivity (SE) of 100%, 
a positive predictive value (PPV) greater than 99 %, and an F1 
score greater than 99 % for the detection of all key points 
within a cardiac cycle in both ABP and PPG waveforms. The 

tool utilizes a single signal (the non-stationary component of 
the IEM method) to identify the temporal location of all key 
points within a cardiac cycle, in contrast to the two different 
signals employed in the literature (1st and 2nd derivatives) 
[15]. Moreover, in terms of computational cost, the IEM 
method requires only O (LN) operations for number of 
iterations L and signal length of N. The graphical user 
interface we designed to help researchers and clinicians use 
our proposed tool is shown in Fig. 4. Furthermore, future 
research will focus on exploring the potential of the tool to 
detect the temporal location of key points when they are less 
distinct within a cardiac cycle, especially the dicrotic notch, 
as it tends to diminish with age [21]. Additionally, we will 
compare its performance against a multi-annotator gold 
standard with annotations verified by medical experts. 

B. Extracted features 
After demonstrating excellent performance in detecting the 

temporal location of all five key points within a cardiac cycle 
on the randomly selected ABP and PPG cardiac cycles, the 
tool was applied to the complete set of PPG and ABP 
waveforms obtained from 4893 patients in the MLORD 
dataset. A total of 632 PPG features per cardiac cycle were 
extracted from the PPG waveforms, along with simultaneous 
systolic blood pressure, diastolic blood pressure, and mean 
arterial pressure values calculated from corresponding cardiac 
cycles in the ABP waveform. In total, 1,487,955 PPG cardiac 
cycles for extracting PPG features (632 features/PPG cardiac 
cycle) and an equal number of ABP cardiac cycles for 
calculating blood pressure values (systolic blood pressure, 
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diastolic blood pressure, and mean arterial pressure/ABP 
cardiac cycle) were used to create the feature library. The 
extracted features from PPG cardiac cycles includes 
amplitude features (n1=30), amplitude ratio features (n1=210), 
duration features (n1=10), duration ratio features (n1=46), 
average features (n1=40), median features (n1=20), root mean 
square features (n1=20), area features (n1=40), area ratio 
features (n1=180), as well as systolic rise phase width and 
overall decay phase width features (n1=36), measured at 
different percentages of a cardiac cycle in the PPG waveform. 
For better understanding, extracted duration features are 
shown in Fig. 5(a) with their descriptions in Table 2. 
Moreover, a few extracted systolic rise phase width and 
overall decay phase width features are displayed in Fig. 5(b).  

IV. CONCLUSION 
We conclude that our proposed signal processing tool can 

be utilized for extracting features from ABP and PPG 
waveforms. The potential of these features can then be 
explored in feature-based machine learning models for non-
invasive blood pressure estimation and the prediction of 
hypotension or hypertension. Additionally, the developed 
feature library, which includes extracted features from PPG 
waveforms along with the blood pressure values (systolic 
blood pressure, diastolic blood pressure, and mean arterial 
pressure), provides a valuable resource for researchers 
worldwide to explore the feasibility of PPG features in 
developing machine learning models for non-invasive blood 
pressure estimation. Future research will focus on validating 
the noise robustness performance of the proposed tool in 
terms of key points detection and expanding the feature 
library by integrating frequency domain features derived from 
PPG waveforms. 

DATA, FEATURE LIBRARAY, AND PROPOSED TOOL 
AVAILIBILITY 

The interested parties may contact the first author at 
(rpal@mednet.ucla.edu) or the corresponding author at 
(mcannesson@mednet.ucla.edu) to request access to the 
MLORD dataset, developed feature library with the detailed 
description (supplementary material file) of extracted 
features, and proposed featurization tool. 
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