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Abstract 8 
Object: This work aims to introduce a novel method to mitigate the global phase deviation inherent in 9 
photoplethysmography imaging (PPGI) due to hemodynamics.  10 
 11 
Method: We model the facial vascular network captured by a consumer camera as a two-dimensional manifold, 12 
where the complex dynamics of the vascular tree leads to intricate phase variations across skin sites. Utilizing 13 
PPGI, we sample the vector field on the facial manifold encoding these intricate phase variations over different 14 
skin sites resulting from blood volume modulations. We propose leveraging the graph connection Laplacian (GCL) 15 
technique to quantify the global phase deviation, with the hypothesis that correcting this deviation can improve 16 
the quality of the PPGI signal and that the phase deviation encodes valuable anatomical and physiological 17 
information.  18 
 19 
Result: The proposed algorithm yields a higher-quality global PPGI signal by correcting the global phase deviation 20 
estimated by GCL, emphasizing waveform features such as the dicrotic notch. The perfusion map, with the global 21 
phase deviation estimated by GCL as intensity, reflects skin perfusion dynamics influenced by varying travel 22 
distances and anatomical structures. 23 
 24 
Conclusion: This algorithm enhances the quality of the global PPGI signal, facilitating the analysis of 25 
morphological parameters and showing promise for advancing PPGI applications in scientific research and clinical 26 
practice. 27 
 28 

1. Introduction 29 
The landscape of cardiovascular health monitoring has undergone a notable transformation with the 30 

introduction of smartphone cameras. This technology allows for extraction and analysis of photoplethysmography 31 
(PPG) signals. Camera-based PPG imaging (PPGI) has evolved from the original contact-based methods which 32 
traces its origin back to the early 20th century [1]. Initially developed to measure blood volume changes in the 33 
microvascular bed, PPG has evolved over time to incorporate imaging modalities, providing a non-invasive means 34 
of assessing physiological parameters [2]. The advent of consumer electronics and advanced imaging technologies 35 
(like CCD earlier [3] and now CMOS sensors [4]) has propelled PPGI into the spotlight, particularly in the last 36 
two decades, starting with pioneering works of Blazek et al. group [3], [5]. The PPGI typically involves capturing 37 
variations in light absorption or reflection at the skin surface, primarily driven by pulsatile blood flow changes. 38 
This technique has found diverse applications, ranging from pulse oximetry  [6], [7], [8], [9] and cardiovascular 39 
monitoring to more recent innovations in facial PPG for health assessments [10], [11]. The ability of PPGI to 40 
provide contactless measurements has garnered interest also in another fields such as such as vital sign monitoring  41 
[12],  [13], [14], [15], [16], wound assessment [17], [18], driver state estimation [19], [20], [21] or pain evaluation 42 
[22]. The continuous refinement of PPGI methodologies and the exploration of novel applications underscore its 43 
significance in modern healthcare and wellness monitoring.  44 

Researchers and practitioners are increasingly turning to additional techniques to broaden the comparative 45 
analysis and push the boundaries of PPGI capabilities. Starting from traditional spatial averaging [12], which 46 
primarily aims to increase the signal-to-noise ratio, different methods are used, differing from each other in their 47 
complexity or approach to signal extraction. At this point, we can mention the R-G algorithm [23] combining the 48 
red and green channels in the case of PPGI via an RGB camera, or the POS (Plane-Orthogonal-to-Skin) algorithm 49 
[24], which works with all three layers, or others such as, also in this case, the historically sorted G [12], which 50 
works only with the green layer or greyscale data, the aforementioned G-R [23], PCA [25], ICA [26], CHROM 51 
[27], PBV [28], 2SR [29], nonlinear-type time-frequency analysis like synchrosqueezing transform [30], the 52 
aforementioned POS [24] or Face2PPG [31]. Another approach is deep or machine learning methods [32], [33], 53 
which bring additional potential for feature extraction, classification and understanding of complex links within 54 
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PPG signals. Another approach is using a lock in amplification method with the reference PPG signal either from 55 
external device or by averaging of skin pixels from whole recorded area [34], [35].  56 

There is unavoidable global phase (or temporal) deviation across a body of tissue caused by the properties of 57 
the vascular tree, which is a system of interconnecting and branching elastic vessels where the pulse waves (i.e. 58 
direct and backward) propagate in different directions and velocities from the heart towards the periphery and 59 
back. This is further complicated by the interaction of this vascular tree with the autonomic system causing both 60 
localized and global changes in vascular tone. The main novelty of this paper is the use of synchronization based 61 
on the graph connection Laplacian (GCL) [36], [37] to quantify and modify the global phase deviation. Already as 62 
mentioned above in a physiological context, phase deviations in PPGI signals at different skin sites are intricately 63 
linked to the dynamic blood flow pattern in the vascular network. Our hypothesis is that this hemodynamic-induced 64 
phase variation embodies valuable anatomical information and potentially other relevant details of interest. We 65 
model the vascular network underlying the facial pixels, which in this case are recorded using a consumer camera, 66 
as a two-dimensional manifold that encodes the phase of localized blood flow. The goal is to use PPGI over each 67 
pixel to reconstruct this phase information and thus obtain an integral and improved global PPGI curve that could 68 
be used to analyze its morphological parameters and at the same time improve the spatial resolution of PPGI in 69 
mapping skin perfusion dynamics. 70 

2. Materials and Methods 71 
In this section, we provide a detailed description of our algorithm (the flow chart is shown in Fig. 1), which 72 

aims to extract tissue perfusion information from video recording acquired by consumer electronics (a smartphone 73 
camera) and improve the properties of the detected PPG curve in terms of its morphology and the detection of 74 
spatial dynamics across the recorded region. 75 

 76 
Fig. 1: Algorithm flowchart. 77 

2.1. Experimental setup 78 
The experimental setup is based on a study conducted on volunteers undergoing a lower body negative 79 

pressure (LBNP) procedure [38], with their faces being recorded using a consumer-quality camera, namely the 80 
iPhone 11 (Apple, Cupertino, CA, USA). During recording, automatic settings such as autofocus were turned off 81 
while exposure was locked to prevent changes in the image that could reduce the quality of the perfusion 82 
information. Video was recorded in H264 compression format with a frame rate of 30 Hz. The subject's face in 83 
supine position was illuminated with white diffuse LED light. As part of the comprehensive LBNP protocol, we 84 
selected only a 30 s segment from the baseline portion of the recording. The study protocol was approved by the 85 
Institutional Review Board of Yale University (No. 2000031899). Informed consent was obtained from all subjects 86 
prior to the study. All methods were performed in accordance with the study protocol and with the Declaration of 87 
Helsinki. To verify the functionality and assess the performance of the algorithm, we selected 5 subjects (2 females 88 
and 3 males) aged 36.2±11.39. 89 

2.2. Photoplethysmography signal extraction from video 90 
The first step was the extraction of PPG signals from the video recording. In this respect, the camera sensor 91 

can be thought of as a PPG sensor matrix, where in theory each pixel of the image sequence can carry spatial 92 
information about the blood supply of a given location. The SNR of consumer cameras is usually not sufficient to 93 
extract the PPG signal from only one pixel, and different techniques have been used to increase the SNR. In most 94 
cases, the first step is spatial averaging of pixels either in the form of spatial down sampling [9] or through a 95 
moving kernel with the desired overlap [39]. In our case, we average the pixel values in a box of size 30×30 px2 96 
with 10 px overlap which represents cumulating pixel information from the areas of approx. 1 cm2 at given camera 97 
distance and its field of view. We call an overlapping region of size 30×30 pixels a channel and suppose we obtain 98 
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𝐿 channels. This step will not only increase the SNR of the extracted PPGI signals, but also reduce the number of 99 
signal vectors to work with while still maintain a reasonable spatial resolution. The result of this process (see Fig. 100 
2) is a raw PPG signal that we decompose into individual color layers, including red (R), green (G), and blue (B), 101 
and store on disk for further analysis. Next, we work only with the green (G) channel, which contains the most 102 
information about perfusion. This fact is related to the technical realization of the color camera (Bayer mask), the 103 
wavelength of the green light and its penetration into the tissue, as well as the absorption and scattering properties 104 
of the skin. The main luminophore in this case is blood hemoglobin [39], [40], [41]. Denote 𝑥!" ∈ ℝ#, where 𝑁 =105 
900 is the number of sampling points over the 30 s segment with the frame rate of 30 Hz, to be the raw PPGI 106 
signal collected from the 𝑖th pixel. 107 

 108 
Fig. 2: Spatial averaging and obtaining PPGI signals 109 

2.3. Signal pre-processing and filtering 110 
Further signal processing proceeds by segmenting the skin using a Gaussian Mixture Model (GMM) to ensure 111 

that we continue to work only with living skin pixels where we can expect PPG signals to be present (see the dark 112 
blue region in Figure 1(a)). The segmentation is semi-automatic and allows the user to control the detected clusters 113 
and add them as needed.  114 

The next step involves the application of a discrete wavelet transform (DWT) for each PPGI channel to select 115 
a band with the range 0.4 – 4 Hz that we can assume cardiac activity. For their extraction, we use the Daubechies 116 
4 wavelet (db4), with the number of DWT levels/octaves set to 5.  Denote the resulting signals 𝑥!$ ∈ ℝ%"". 117 

After the DWT, we select a segment with minimal motion artifact in the following way. First, find all channels 118 
associated with the subject's forehead region (see the red box/ROI in Figure 1(a)) and obtain average of the 119 
associated signals, which is denoted as 𝑥&'()*)+,$ ∈ ℝ%"". From 𝑥&'()*)+,$ , we manually extract a high quality ten-120 
second interval that is less impacted by motion artifacts. Then, restrict 𝑥!$ on the selected ten-second interval, and 121 
denote the resulting signals 𝑥!- ∈ ℝ."". 122 

The process continues by extracting the first and second harmonics of each PPGI signal 𝑥!- based on the 123 
continuous wavelet transform (CWT) using the time-frequency ridge method, followed by the inverse CWT and 124 
interpolating from the original 30 Hz to 900 Hz in order to retrieve subtle phase shifts across the signals, which is 125 
denoted as 𝑥! ∈ ℝ%,""". Since the PPGI signals are generally noisy and we use relatively small averaging regions 126 
to keep the spatial information, the second harmonic component in the CWT spectrum is usually overlaid with 127 
noise. To extract it, we use the frequency ridge by simply considering doubling the extracted ridge of the first 128 
harmonic component, and then extract the second harmonic component. Denote the first and second harmonics of 129 
the 𝑖th channel as ℎ$,! ∈ ℝ%,""" and ℎ-,! ∈ ℝ%,""" respectively. 130 

Next, the signal is trimmed to the length of only 3 consecutive heartbeats, taking into account both the phase 131 
alignment dependence of the data length (influenced by heart rate variability) and the exact selection starting from 132 
the peak or valley of the PPG curve. A Hilbert transform is then performed. 133 

2.4. Synchronization of the extracted PPG signals 134 
Due to the inevitable global phase deviation caused by hemodynamics, the main novelty of this paper is applying 135 

the graph connection Laplacian [36], [37] to adjust the global phase deviation. In a physiological context, the phase 136 
variations in PPGI across different pixels are intricately linked to the dynamic progression of blood flow within 137 
the vascular network. Our hypothesis posits that this phase deviation induced by hemodynamics encapsulates 138 
valuable anatomical and physiological information and potentially other pertinent details of interest. We model the 139 
vascular network underlying the facial pixels as a 2-dim manifold and the geometric structure encodes the phase 140 
of blood flow changes. The goal is to use the PPGI sensors over each pixel to recreate this phase information and 141 
hence the vascular network structure. We first estimate the pairwise phase deviation between any two PPGI 142 
channels 𝑥! and 𝑥0 using their 1st harmonics ℎ$,! and ℎ$,0. Compute: 143 

 𝑐!,0 ≔
⟨𝐻0ℎ$,!1, ⟨𝐻0ℎ$,01⟩
4⟨𝐻0ℎ$,!1, 𝐻0ℎ$,01⟩4

	, (1) 

where 𝐻  converts the real-form signal into its analytic companion, defined as 𝐻(ℎ$,!) 	= ℎ$,! +√−1 ×144 
𝐻𝑖𝑙𝑏𝑒𝑟𝑡(ℎ$,!), with 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 the Hilbert transform, and ⟨, ⟩ is the inner product of two complex signals. The entry 145 
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𝑐!,0 estimates the global phase shift of 𝑥! and 𝑥0. See [38] for more discussion about the nonlinear relationship 146 
between harmonic phase and PPG morphology and Discussion for more technical details. Since we have 𝐿 PPGI 147 
channels, we obtain a Hermitian function 𝐶 of size 𝐿 × 𝐿, called the graph connection Laplacian (GCL), so that 148 
the (𝑖, 𝑗)th entry of 𝐶 is 𝑐!,0 if the ith channel and jth channel are within 5 cm distance, and 0 otherwise. We find 149 
the eigenvector of 𝐶, denoted as 𝑤$, 𝑤-…, with the associated eigenvalues ranked from large to small. Then, the 150 
global phase deviation of the 𝑖th PPGI channel is then corrected by: 151 

 𝑥F! ≔ 𝑅𝑒 H𝐻(𝑥!) ×
𝑤$(𝑖)
|𝑤$(𝑖)|

∗

J	, (2) 

where 𝑅𝑒 means taking the real part and the superscript * means taking the complex conjugation. The philosophy 152 
underlying this correction is that 𝑤$(𝑖) recovers the blood flow phase underlying the 𝑖th channel. See discussion 153 
section for more technical details of this GCL algorithm. 154 
 155 

2.5. Construction of the final non-contact PPG signal 156 
We construct several non-contact PPG signals. The first one is by a simple averaging of all unaligned PPGI 157 

channels; that is, 𝑥(3+45)+6) ≔ $
8
∑ 𝑥!8
!9$ . The second one is averaging all aligned PPGI channels; that is 158 

𝑥(+45)+6) ≔ $
8
∑ 𝑥F!8
!9$ . 159 

2.6. Construction of perfusion maps 160 
We propose the following approach to visualize perfusion patterns in the face.  We generate images encoding 161 

the energy of the first harmonic, denoted as 𝐼:,$, which is defined as the energy of the 1st harmonic of each channel. 162 
We call these maps energy maps. 163 

The next set of mappings is generated from the top eigenvector of GCL, 𝑤$. The phase encoded in 𝑤$(𝑙) =164 
|𝑤$(𝑙)|𝑒!;!(<), reflects the phase shift of the 𝑙th channel over the face. Generate a colored image on the face region 165 
with the color in each pixel reflecting the entry of 𝜗$. Denote the resulting images as 𝐼=*+>). We call these maps 166 
phase maps.  167 

For each image, to avoid the impact of oversaturation, we replace all values larger than 95% percentile by 168 
the 95% percentile before plotting. For phase maps, we also trim colormap based on the range of median phase 169 
±1rad of entire skin area in order to highlight subtle difference in phase shifts across the PPGI channels. 170 
 171 

3. Statistical analysis 172 
To quantify the performance of phase synchronization for PPGI signal 𝑥F!, we consider the following metric. 173 

For the raw unaligned signals, we apply the Hilbert transform and obtain the complex form 𝑥N!. We then convert 174 
the amplitude and phase into the phasor form at the center point: 175 

 𝑥N!(𝑐) = |𝑥N!(𝑐)|𝑒!?@ "(A)	, (5) 

where 𝑐 denotes the center point that we extract the phasor and 𝜑N!(𝑐) ∈ [−𝜋, 𝜋]. For the aligned signals, which 176 
are the output of (2), we apply the Hilbert transform to obtain the complex form 𝑥S!. We then convert the amplitude 177 
and phase into the phasor form at the center point: 178 

 𝑥S!(𝑐) = |𝑥S!(𝑐)|𝑒!?B "(A)	, (6) 

where 𝑐 denotes the center point that we extract the phasor and 𝜑S!(𝑐) ∈ (−𝜋, 𝜋). Denote the median of {𝜑N !(𝑐)} as 179 
𝜑N  and denote the median of {𝜑S!(𝑐)}  as 𝜑S . To check if {𝑚𝑜𝑑(𝜑S!(𝑐) − 𝜑S, 2𝜋)} ⊂ [−𝜋, 𝜋]  and {𝑚𝑜𝑑(𝜑N !(𝑐) −180 
𝜑N, 2𝜋)} ⊂ [−𝜋, 𝜋] have the same distribution, we apply the Kolmogorov-Smirnov test with p<0.05 viewed as 181 
statistically significant. Also, apply F-test to check if {𝑚𝑜𝑑(𝜑S!(𝑐) − 𝜑S, 2𝜋)} ⊂ [−𝜋, 𝜋]  and {𝑚𝑜𝑑(𝜑N !(𝑐) −182 
𝜑N, 2𝜋)} ⊂ [−𝜋, 𝜋] have the same variance with p<0.05 viewed as statistically significant. We also performed 183 
Wilcoxon signed-rank test to investigate if the phase shift on the cheeks and forehead, where the phase deviation 184 
of the 𝑖th channel is quantified by the angle of C!(!)

|C!(!)|
, are different with p<0.05 viewed as statistically significant. 185 

Bonferroni correction is applied to correct the multiple tests. 186 
 187 
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4. Results 188 
The first step to verify the quality of the phase alignment of the PPGI curves was to plot the phasors 189 

separately for 1st harmonic component. The distribution of phasors of all PPGIs channels evaluated by (6) of all 190 
subjects is shown in Fig. 3, where we plot 𝑥S!(𝑐) as a vector, with the magnitude |𝑥S!(𝑐)| and angle 𝜑!(𝑐). It can 191 
also be noticed in Fig. 3 that the unaligned phasors (blue arrows) tend to be directed and arranged in two or more 192 
clusters for some subjects, while aligned phasors are in general well clustered in one direction. The Kolmogorov-193 
Smirnov test showed that the two distributions are significantly different with 𝑝 < 104E, and the F-test showed 194 
that the two distributions have significantly different variance with 𝑝 < 104E . On the other hand, we shall 195 
emphasize the observation that dominant direction 𝜑S  of aligned PPGI signals differs from subject to subject. This 196 
is the consequence of the nonuniqueness of GCL approach inherited from the freedom of eigendecomposition.  197 

 198 

 199 
Fig. 3: Visualizaton of phase alignment. Five compass plots in the top row depict arrows representing aligned (red) and unaligned 200 

(blue) states across subjects, where columns represent different subjects. In the bottom row, the alignment is carried out using the second 201 
harmonic. 202 

After aligning the PPGI signals and verifying the quality of their alignment, we obtain various final non-203 
contact PPG signals, including 𝑥(3+45)+6), 𝑥(+45)+6) shown in Fig. 4. One of the interesting effects of phase 204 
alignment is the appearance of the dicrotic notch, which is most pronounced for Subject 2 in Fig. 4. Another 205 
observation is that the average of phase aligned PPGIs contributes to maximizing the amplitude of the PPGI signal. 206 

 207 

 208 
Fig. 4: Comparison of averaging phase unaligned and phase aligned PPGI waveforms from all channels to generate the final non-209 

contact PPG signal. Solid blue curves are from the unaligned PPGI signals, while dashed red curves are from the aligned PPGI signals. From 210 
left to right: results from subjects 1 to 5 respectively.  211 

Next, we demonstrate the perfusion maps derived from PPGI. See Fig. 5 and Fig. 6 for our 5 different subjects, 212 
who were selected based on specific characteristics such as skin tone, facial hair, facial mask or extensive makeup. 213 
We will pay specific attention to the difference between cheeks and forehead, the two dominant areas on the face 214 
that are supplied by different arteries.  215 

For subject 1 we can observe different captured amplitudes in the cheeks and glabella region in the energy 216 
maps, which might be interpreted as ``cheeks are more perfused’’. Another interesting observation for subject 1 is 217 
its phase map associated with 𝑤$, where we can see clustering at specific locations in the image. There is a slightly 218 
different phase shift in the right side of the face. The forehead area also exhibits different phase shift compared to 219 
other parts of the face which could be related to different arterial supply.    220 

Subject 2 is specific to his facial hair (chin and beard), which may be a source of motion artifacts that may 221 
deceptively influence the detected PPGI signal amplitude. Again, the cheeks have more dominant energy compared 222 
to forehead also in this case. In the phase map, while it is less obvious, the phase in the forehead is different from 223 
that in the cheek. 224 

Subject 3 is specific in that he is wearing a face shroud and also has goggles on his eyes. For this case, it is 225 
not possible to obtain information over cheek, so a comparison between cheeks and forehead is not possible.  226 
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For subject 4 (Fig. 6), we notice a distinct vertical line across the middle of the forehead, which may be a 227 
wrinkle or an ongoing supratrochlear vein. This area is even more pronounced in the phase map. Again, we can 228 
see a phase difference between the forehead and cheeks in the phase map. 229 

We can also see an interesting result for subject 5 (Fig. 6), where the glowing eye surroundings can be tracked 230 
in the energy maps. In this case, this is the result of different makeup on the face and around the eyes. In this case, 231 
this is a consequence of the different makeup on the face and around the eyes. In this case, the phase difference 232 
between the forehead and cheeks is less clear in the phase map. 233 

Wilcoxon signed-rank test showed that the phase deviation is significantly different in forehead and cheeks 234 
for subject 1, 2 and 4 (with p < 10-4). We did not test subject 2 because we cannot access the cheeks due to the 235 
facial mask. We also omitted subject 5 due the extensive makeup.  236 

 237 
 238 
 239 

Fig. 5: Results of the two perfusion maps for the first three subjects with diverse characteristics, including skin tone, facial hair, mask. 240 
For each subject, the left subfigure is the energy map, and the right subfigure is the phase map. Figures not shown due to the Medrxiv’s policy. 241 

Fig. 6: Results of the two perfusion maps for the last two subjects with diverse characteristics, including skin tone and makeup. For each 242 
subject, the left subfigure is the energy map, and the right subfigure is the phase map. Figures not shown due to the Medrxiv’s policy. 243 

 244 

5. Discussion and Conclusion 245 
Our aim is to advance the signal processing techniques for PPGI further in two directions, both of which can 246 

be applied in different areas. The first attempt is applying the GCL-based synchronization algorithm to construct 247 
a better-quality global PPG, which contains details that are more challenging to obtain using traditional approaches, 248 
like dicrotic notch and its precisely localized position. The novelty is viewing GCL as a coupler for all PPGI signals 249 
so that we can determine the phase discrepancy arises from the pulse wave travel through the vascular tree, and 250 
hence synchronize all PPGI signals. The results show that this unique method proposed by us can enhance the 251 
features of the PPG waveform (see Fig. 4) and boost its amplitude.  The second attempt is introducing novel images 252 
called perfusion images, which encode hemodynamics extracted from GCL. The novelty is using the phase 253 
information hidden in the eigenvectors of GCL, which directly encodes the global phase deviation caused by the 254 
blood flow in the complicated vascular network at different locations of the imaged area.  255 
 256 

Physiologically, the supraorbital and supratrochlear arteries dominate the blood supply to the forehead, while 257 
the facial artery predominantly supplies blood to the cheeks. The supraorbital and supratrochlear arteries are 258 
supplied by the internal carotid while the facial artery originates from the external carotid artery.  Due to the 259 
difference in the travel distance and anatomical structure, it is reasonable to hypothesize that the PPG phases are 260 
different in these two regions. Our findings support this hypothesis. 261 
 262 

We shall elaborate some technical details. In general, PPG signal is not sinusoidal and can be represented by 263 
multiple harmonics [42]; that is, we can model a clean PPG signal as 𝑥(𝑡) = 𝐴(𝑡)𝑠0𝜑(𝑡)1 =264 
𝐴(𝑡)∑ α<cos	(2𝜋𝑙𝜑(𝑡) + 𝛽<)8

<9$ , where 𝐴 is a positive smooth function describing the amplitude modulation, 𝑠 is 265 
a 1-periodic function describing the morphology of the nonsinusoidal oscillation, 𝜑(𝑡) is a strictly monotonically 266 
increasing function describing the phase of the PPG so that its derivative describes the instantaneous heart rate, 267 
𝐿 > 1 is the number of harmonics, and α< > 0 and 𝛽< ∈ [0,2𝜋) come from the Fourier series of 𝑠. In this case, 268 
recovering the phase 𝜑(𝑡) from the Hilbert transform of 𝑥(𝑡) is inaccurate due to the existence of harmonics. This 269 
situation is worsened by the existence of noise. Instead, we could better recover the phase from the fundamental 270 
component (the first harmonic) ℎ$(𝑡) ≔ 𝐴(𝑡)α$cos	(2𝜋𝜑(𝑡) + 𝛽$), thanks to the Nuttall theorem [43] and the 271 
assumption that 𝐴(𝑡) in general oscillates slowly compared with the cos	(2𝜋𝜑(𝑡) + 𝛽$). This is the main reason 272 
we design the algorithm with the first harmonic in (1). On the other hand, note that since the PPGI signals 𝑥! and 273 
𝑥0 are usually noisy, 𝑐!,0 is a noisy estimate of the global phase shift of 𝑥! and 𝑥0. The capability of recovering 274 
phase from the usually noisy PPGI signal with the GCL-based synchronization algorithm is supported by the 275 
robustness of GCL to noise [37], [44].  276 

 277 
In addition to the robustness of GCL, we shall also discuss the geometric meaning of GCL. Consider a 278 

simplest and ideal situation that PPGI is clean and faithfully representative of the blood flow changes, and there is 279 
no geometric constraint among pixels. In this case, 𝐶 can be constructed without setting 0; that is, the (𝑖, 𝑗)-th entry 280 
of 𝐶 is simply 𝑐!,0 for any 𝑖, 𝑗. In this case, 𝐶 is a rank one matrix as 𝐶 = 𝜃𝜃∗, where 𝜃 ∈ ℂ8 so that 𝜃(𝑖) encodes 281 
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the phase of the blood flow underlying the 𝑖th channel. In this simplest case, the top eigenvector of 𝐶 gives the full 282 
information of phase in each channel. However, in practice the PPGI is noisy, and there are geometric constraints 283 
imposed by the vascular network. We thus only trust the phase information when two channels are close by, which 284 
leads to the construction of 𝐶 in our algorithm. Geometrically, the top eigenvector of 𝐶 gives us an estimate of the 285 
most synchronized phase information over the vascular network on the face. In this paper, we focus only on the 286 
top eigenvector. The higher eigenvectors of 𝐶 encode more geometric information associated with the underlying 287 
geometric structure associated with the blood vessel distribution. We will explore this topic in our future work. 288 
 289 

It is noteworthy to mention that the phase of PPG signals (in our case, it is captured by the first eigenvector 290 
of GCL) has been studied in different contents. In [12], the authors applied Discrete Fourier Transform to possibly 291 
reveal carotid artery or differentiating normal skin with comparison with port wine stains. Another approach can 292 
be found in [45], where the lock-in amplification is used for phase estimation. It is worth noting that the phase 293 
shift can be calculated across different frequency bands across PPGI signals (in our case, we focus on the frequency 294 
band associated with the first harmonic), e.g. low-frequency oscillation phase distribution which shows as 295 
promising tool to study autonomic nerve system responses to external stimuli [10].  Studying and mapping the 296 
phase shift across imaged area may reveal the locations that the propagating pulse wave reached at the same time, 297 
or the positions of the subcutaneous tissue perforators. It also encodes the locations where motion or 298 
ballistocardiographic (BCG) artifacts may be present, or we may have encountered a counter-phase of the original 299 
PPGI signal [46], [47], [48]. To the best of our knowledge, perfusion maps generated using the phases of the first 300 
eigenvector of GCL have not yet been published and may provide important robust phase estimation tool which is 301 
immune to inevitable noise with theoretical support and can be used in different PPGI scenarios.  302 
 303 

Examples of applications of our proposed signal processing technique could be used in different fields, e.g. 304 
the body's response to external stimuli, such as temperature (cold [10] or heat [49]) or mental stress [50]. While 305 
contact PPG has been widely applied in practice, there are situations that PPGI is needed. For example, it is not 306 
possible to place a contact sensor on the patient's skin when the patient's skin is damaged (injury, burns), or when 307 
monitoring the vital signs of premature newborns. Other applications are the extraction of physiological parameters 308 
such as HR or blood pressure [47], [48]. Given that the dicrotic notch and its determined position play an important 309 
role in studying the condition of the arterial tree, particularly with regard to its stiffness (as indicated by 310 
augmentation or stiffness index, etc.), our proposed algorithm shows promise in effectively capturing these 311 
features. As such, it holds potential for application in this direction. In addition, as some studies have already 312 
pointed, the PPGI has still untapped potential. Namely the challenge is to focus on truly spatial mapping of 313 
physiological parameters, especially in the context of ANS regulation or allergic reactions [10], [11], [51], [52]. 314 
There are also approaches in which the respiratory waveform is extracted from the PPGI recording or respiratory 315 
activity is detected using a method such as optical flow [11], [53] where the proposed algorithm could help too. 316 
Another option is to deploy this method in extracting information about SpO2, and thus in evaluation of the 317 
oxygenation level of arterial or venous or mixed blood [8], [9]. 318 

 319 
 Finally, we want to summarize what our paper offers and how to use the tools. To obtain a higher quality 320 
global PPGI signal when integrating all PPGI signals from the sensed area, we use GCL for their phase alignment. 321 
This results in higher amplitude and highlighted details such as dicrotic notch. If we want to work with spatial 322 
information and analyze the distribution of perfusion parameters across the imaged area, a good step here is to 323 
analyze higher eigenvectors of C. If we are interested in the phase relations between the PPGI waveforms, we can 324 
again use the GCL, which conveys information about the global phase of a given PPGI waveform at a given 325 
location in the image. 326 

 327 
Here we would like to point out the limitations of this work.  Although this is a small sample size, we would 328 

like to stress that this is mainly a methodological work using examples of subjects with a wide variety of 329 
characteristics. Even if the GCL is immune to noise, the quality of the PPGI signals may not always be sufficient. 330 
Instead of simple spatial averaging, other raw signal processing methods presented in the Materials and Methods 331 
should also be considered, which may offer higher SNR or robustness to motion artifacts in particular. Moreover, 332 
capturing the subtle differences between the phase shifts given by the pulse wave propagation velocity and the 333 
geometrical dimensions of the analyzed region is challenging, especially in terms of the demands on the sampling 334 
rate (interpolation may no longer reveal and reconstruct all details) and the size of the processed data. We may 335 
need a ground truth of the perfusion dynamics on the face in some form to further validate the proposed algorithm. 336 
In conclusion, despite the shortcomings, we believe that this novel approach will open the door for new 337 
applications of PPGI and its use not only in science but also in clinical practice. 338 
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