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ABSTRACT

The injury severity classifications generated from the Abbreviated Injury Scale (AIS) provide

information that allows for standardized comparisons in the field of trauma injury research. However, the

majority of injuries are coded in International Classification of Diseases (ICD) and lack this severity

information. A system to predict injury severity classifications from ICD codes would be beneficial as

manually coding in AIS can be time-intensive or even impossible for some retrospective cases. It has

been previously shown that the encoder-decoder-based neural machine translation (NMT) model is

more accurate than a one-to-one mapping of ICD codes to AIS. The objective of this study is to compare

the accuracy of two architectures, feedforward neural networks (FFNN) and NMT, in predicting Injury

Severity Score (ISS) and ISS ≥16 classification. Both architectures were tested in direct conversion from

ICD codes to ISS score and indirect conversion through AIS for a total of four models. Trauma cases from

the U.S. National Trauma Data Bank were used to develop and test the four models as the injuries were

coded in both ICD and AIS. 2,031,793 trauma cases from 2017-2018 were used to train and validate the

models while 1,091,792 cases from 2019 were used to test and compare them. The results showed that

indirect conversion through AIS using an NMT was the most accurate in predicting the exact ISS score,

followed by direct conversion with FFNN, direct conversion with NMT, and lastly indirect conversion with

FFNN, with statistically significant differences in performance on all pairwise comparisons. The rankings

were similar when comparing the accuracy of predicting ISS ≥16 classification, however the differences

were smaller. The NMT architecture continues to demonstrate notable accuracy in predicting exact ISS

scores, but a simpler FFNN approach may be preferred in specific situations, such as if only ISS ≥16

classification is needed or large-scale computational resources are unavailable.

Page 1 of 17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 22, 2024. ; https://doi.org/10.1101/2024.03.06.24303847doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.03.06.24303847
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 INTRODUCTION

Injury severity scores have an important role in trauma injury epidemiology and surveillance1

research. As part of the Abbreviated Injury Scale (AIS), an anatomy-based coding system developed2

specifically for trauma injury documentation, the severity designations built into the AIS codes allow for3

more objective inferences and comparisons to be made for a given set of injuries1. Furthermore, several4

methods have been proposed to produce a clinically significant, global severity score that encompasses5

multiple injuries using these severity designations. Two common approaches used to acquire this6

representative index are the Maximum Abbreviated Injury Scale (MAIS) and the Injury Severity Scale (ISS)7

methods. The MAIS approach utilizes the highest severity designation for a given set of injuries as the8

representative index and is frequently used by the National Highway Traffic Safety Administration to9

evaluate their projects as part of their MAIS-based costs system2,3. The ISS method aggregates the10

highest severity designations from a maximum of three distinct body regions into a 75-point system11

and has become the gold-standard for injury severity quantification4,5.12

However, the majority of medical data, including visits for trauma injuries, are coded using the13

International Classification of Diseases (ICD) due to it often being required for billing and14

reimbursement. Although ICD provides a relatively easy-to-use framework for classifying a wide breadth15

of diseases and procedures with good inter-operator consistency, a notable downside of this16

classification system is the lack of associated injury severity designations. This is particularly important to17

trauma research as it then requires non-standardized inferences to be made about the severity of an18

injury based on its mechanism and connections with other injury codes6. Given the need for19

standardized severity metrics for trauma research and that manual AIS coding of injuries for severity20

designations alone is often prohibitively time-intensive or impossible in some retrospective cases, an21

automated system to obtain injury severity information using ICD codes is important.22

Several methods to facilitate and simplify the conversion of ICD to ISS currently exist. Supported23

by the organization that maintains AIS, the Association for the Advancement of Automotive Medicine24

(AAAM), Loftis et al. in 2016 developed the latest official ICD to AIS body region-severity mappings that25

bridge ICD9 and ICD10 to AIS 2005 with the 2008 update7. In 2010, Clark et al. released a Stata26

module, ICDPIC, that allowed for the conversion of ICD-9 codes to AIS body region-severity pairs8. The27

module was then ported into R as ICDPIC-R in 2018 and updated to include ICD-109. More recently in28

2023, Hartka et al. developed a neural machine translation-based tool that allowed for the conversion of29

ICD10 to full AIS 2005 with 2008 update codes using the National Trauma Data Bank10. This NMT30

model showed improved accuracy compared to the official AAAM map and ICDPIC(-R) methods,31

especially for major trauma defined by an ISS ≥16. However, these methods generally fall short in several32

metrics. Studies analyzing the 1:1 translation accuracy of the official AAAM mappings compared to33
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manual coding by certified AIS coders demonstrated moderate accuracy ranging from 70-82% and poor34

inter-operator agreement as low as 48%11–13. Studies evaluating the accuracy of ISS scores calculated35

from ICD codes converted using ICDPIC-R demonstrated an overall accuracy of 17.7%10,14. Finally, all36

three methods of ICD to ISS score conversion globally underestimate the ISS score compared to those37

calculated frommanually-coded AIS codes10,13,14.38

The results from the NMT approach indicate that deep learning is a promising technology for ICD39

to ISS conversion. However, the use of an NMT to first convert ICD codes to AIS codes and then calculate40

the ISS score from the converted AIS codes may be more complex than necessary. The goal of this study41

was to compare the performance of the simpler feed-forward neural network (FFNN) architecture to the42

performance of the more complex NMT architecture in predicting severity information, as well as43

determine if there is an advantage in direct prediction from ICD codes compared to indirect prediction44

through AIS.45

2 METHODS

This study compared two different machine learning architectures, FFNN and NMT, using two46

different model structures for each, direct conversion from ICD to ISS and indirect conversion through47

AIS. These models were trained and tested using data from the U.S. National Trauma Data Bank (NTDB).48

2.1 Datasets

The NTDB is a dataset managed by the American College of Surgeons that contains trauma injury49

cases reported from every Level-I, Level-II, and Level-III trauma center in the United States as part of their50

credentialing requirement. Specifically, the dataset covers trauma injury cases where the patient either51

was admitted to the hospital or died in the emergency department. Although Level-IV, Level-V, and52

community hospitals are not required to report injury cases, they are able to do so voluntarily.53

Every case in the NTDB contains demographic information about the patient, the mechanism of54

initial injury, procedures, diagnoses, and outcomes. The patient’s age, sex, and co-morbidities are55

included in the demographics. The initial mechanism of injury is reported using ICD external-cause56

codes (E-codes) while any procedures that were performed are reported using ICD procedures codes57

(P-codes). The diagnoses were doubled coded in both ICD and AIS manually by trained registrars58

certified in both systems. Double manual coding provides the current gold-standard data for ICD to AIS59

and thereby ICD to ISS conversions. It has been used to test other conversion models, including AAAM’s60

official ICD to AIS mappings10,13.61

NTDB data from 2017-2018 was used to train and validate the models while data from 2019 was62

used to test them. During these selected years, the diagnoses for a given case were reported using both63

ICD-10 and AIS 2005 with 2008 update. The 2,031,793 trauma cases from 2017-2018 were pooled64
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together and randomly assigned to training and validation datasets at a 90%-10% ratio, resulting in65

1,828,613 being used for training and 203,180 cases being used for validation. The testing dataset66

comprised all 1,091,792 trauma cases from 2019. Data from a separate year was chosen for testing to67

account for any minor inter-year changes in coding practices.68

2.2 Outcomes of interest

The two primary outcomes of interest for this study were exact ISS score prediction and ISS ≥1669

classification accuracy. ISS ≥16 is a commonly used cutoff for classifying a patient as severely injured70

based on mortality rates identified in the Major Trauma Outcome Study15,16. The gold standards used to71

assess model performance were the ISS score and ISS ≥16 classification calculated from the72

corresponding manually coded AIS codes. Sensitivity and specificity were reported alongside ISS ≥1673

classification prediction accuracy due to it being an imbalanced metric within the dataset with most74

cases failing to meet criteria. Further subpopulation sensitivity and specificity analysis were performed75

on ISS ≥16 classification performance stratified by sex and age.76

The secondary outcomes of interest were MAIS ≥3 classification prediction accuracy and the77

percent of all predicted AIS codes that were correct. A predicted AIS code was considered correct if it78

either exactly matched a manually coded AIS code or shared both body region and severity with one.79

These secondary outcomes were only performed on indirect models given their intermediate AIS80

prediction step, which is skipped in direct models.81

2.3 FFNN models

The two FFNNs developed for this study were built using the PyTorch framework, which is an open-82

source, machine-learning framework based on the tensor library Torch. Both the direct and indirect FFNN83

models contained aparametric rectified linear unit (PReLU) layer between two linear transformation layers84

that were initialized using the Kaiming uniform method17. The initial value for the PreLU layer was 0.25.85

The output function for themulticlass classifier, the direct FFNN, was a LogSoftmax layer while the output86

function for themultilabel classifier, the indirect FFNN, was a Sigmoid layer. Weights were adjusted using87

an Adagrad optimizer with an initial β1 and β2 of 0.9 and 0.98, respectively. The initial learning rate was88

0.01 with a decay factor of 5 for every two consecutive un-improving epochs and an early stop condition89

of 10 decays. A negative log likelihood loss function was used during training of the direct FFNN while a90

binary cross entropy loss function was used for the indirect FFNN.91

As input for the FFNN models, every age and sex demographic, E-code, P-codes, and ICD-1092

diagnosis code present in the dataset were combined and transformed into a binary dummy variable93

system. Each trauma case was then converted into a sparse binary tensor of these dummy variables,94

which were used as input for both the direct and indirect models. A similar system was used for the95

outputs, with every possible ISS score being converted to a dummy variable system for the direct FFNN96
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and every AIS code being used for the indirect FFNN. However, the method for selecting the predictions97

from the output tensor differed between the direct and indirect structures. The ISS dummy variable with98

the largest predicted score from the LogSoftmax layer was chosen for the direct structured model while99

any AIS dummy variable with a predicted score greater than 0.3 from the sigmoid layer was selected for100

the indirect structured model.101

2.4 NMT models

The two NMTs developed for this study were built using the PyTorch implementation of OpenNMT,102

an open-source toolkit developed to research NMTs and perform competitively. The NMT models were103

based on the Transformer architecture published by the Google Brain team18. Eight attention heads with104

a dropout of 0.1 were used and the encoder-decoder stacks contained six identical, 512-unit layers. Each105

encoder layer contained a multi-head self-attention mechanism followed by a position-wise FFNN and106

layer normalization. Eachdecoder layer containedamaskedmulti-headattentionmechanism followedby107

a similar multi-head self-attention and FFNNmechanisms as the encoder layers. Weights were adjusted108

using an Adam optimizer with an initial β1 and 2 of 0.9 and 0.998, respectively, and an initial learning109

rate of 2. The learning rate decay was proportional to the inverse square root of the step number and a110

categorical cross-entropy loss function was used for training.111

The input for the NMT models were sentences generated by concatenating the age and sex of the112

patient, the E-code, any P-codes, and the ICD-10 diagnosis codes for each trauma case into a113

space-separated string without periods. These sentences were used as input for both the direct and114

indirect NMT models. The age, P-codes, and ICD diagnosis codes were prefixed with an A, P, and D,115

respectively, to separate them in the vocabulary structure generated by the model as well as increase116

readability when examining attention results. The output sentences differed between the direct and117

indirect structures. For the direct structure, the output sentence was only the ISS score. For the indirect118

structure, the output sentence was a space-separated string of AIS codes without the severity119

designation arranged in ascending numerical order.120

2.5 Testing and comparing the models

Predicted ISS scores and ISS ≥16 classifications were generated for the testing dataset using the121

four models and were compared to expected scores and classifications from the databank. Accuracies for122

correctly predicting the exact ISS scores and ISS ≥16 classifications were calculated for the four models123

and compared to one another. The statistical significance of the differences in performance were tested124

using Cochran’s Q test followed by post-hoc pairwise McNemar tests. Root mean squared error (RMSE)125

was used to further compare the fourmodels in predicting exact ISS scoreswhile sensitivity and specificity126

analysis was performed on the ISS ≥16 classification results. Additional subpopulation sensitivity and127

specificity analysis were performed after stratifying for both sex and age, with age being binned into 0-128
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17, 18-64, and 65+ year groups.129

For the secondary outcomes, the predictedMAIS≥3 classifications for the two indirectmodelswere130

compared against the expected MAIS ≥3 classifications. The statistical significance of the difference in131

performance was tested through a McNemar test. The quality of the AIS code predictions were analyzed132

by calculating the percentage of predicted codes that either exactly matched or shared the same body133

region and severity with an expected code. This percentage was calculated from the union set of both134

predicted and expected codes for each case. Statistical differences between the two sets of percentages135

were then compared using the Wilcoxon signed-rank test and effect size was reported as the pseudo-136

median difference.137

3 RESULTS

3.1 Model training and testing

The demographic and injury statistics for the training, validation, and testing datasets are shown138

in Table 1. The number of injuries per patient, the distribution of ISS scores, and the percentage of MAIS139

≥3 classifications were similar across the three datasets. However, the testing dataset had a slightly140

older population with more incidence of falls, less male predominance, and a lower prevalence of ISS141

≥16 classifications compared to the training and validation datasets. Yet, given that the testing dataset142

was obtained from a different year to allow for robustness testing against inter-year differences, some143

variation in the distributions was expected.144

Training and testing durations for the four models are shown in Table 2. Testing was performed145

twice, once with a CUDA-enabled GPU and once without it. Both training and GPU-inclusive testing146

were performed on a computing cluster with an allocation of four standard processing nodes, 60 GB of147

RAM, and an NVIDIA A100 80GB VRAM Tensor Core GPU. CPU-only testing was performed on a148

computer cluster with similar four processing nodes but without a GPU allocation. Furthermore, the149

RAM size requirements differed between the FFNN and NMTmodels for the CPU-only testing. The FFNN150

models were able to convert ICD codes with a smaller 8 GB RAM allocation while the NMT models151

required a larger 32 GB of RAM. Conversion outputs for both GPU-inclusive and CPU-only testing were152

identical.153
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Table 1: Demographic and injury statistics of the patients in the training, validation, and testing datasets.

Training Dataset Validation Dataset Testing Dataset

Years 2017 - 2018 2019

Total number of patients 1,828,613 203,180 1,091,792

Number of injuries per patient (Median [IQR]) 2 [1-4] 2 [1-4] 2 [1-4]

Age in years (Median [IQR]) 47 [23-68] 47 [23-68] 49 [24-70]

Males (Percentage) 59.71% 59.61% 58.90%

Mechanism of Injury (Percentage)

Falls 46.6% 46.5% 49.2%

Automotive-related 32.2% 32.2% 30.3%

Assault 9.2% 9.2% 8.5%

Self-injury 1.3% 1.2% 1.4%

Other 10.7% 10.7% 10.6%

ISS (Median [IQR]) 8 [4-10] 8 [4-10] 8 [4-10]

ISS ≥16 (Percentage) 15.8% 15.7% 15.2%

MAIS ≥3 (Percentage) 31.0% 31.1% 31.3%

Table 2: Training and testing durations of the four models.

Computation Times

Direct FFNN Indirect FFNN Direct NMT Indirect NMT

Training 11 hrs., 10 mins 11 hrs., 22 mins 12 hrs., 27 mins 14 hrs., 34 mins

Testing (GPU-inclusive) 1 min, 6 s 1 min, 24 s 69 min, 10 s 82 mins, 53 s

Testing (CPU-only) 62 min, 7 s 97 min, 2 s 251 min, 32 s 307 min, 19 s

3.2 Accuracy in exact ISS score prediction

The first primary outcome of interest was the accuracy of the four models in predicting the exact154

ISS score. As shown in Table 3, the indirect NMT model continued to perform the best with an accuracy155

of 79.8%, followed by the direct FFNN (76.5%), direct NMT (75.9%), and indirect FFNN (74.3%) models.156

Cochran’s Q testing followed by post-hoc pairwise McNemar testing without continuity correction157

demonstrated that the differences in performance between each pairwise combination were statistically158

significant (Table 4). When comparing RMSE, the two NMT models demonstrated smaller overall errors159

than the two FFNN models (Table 3). Furthermore, the relative rankings of the direct FFNN and direct160

NMT models’ performance using RMSE was discordant with their respective rankings when using161

accuracy, with the overall less accurate direct NMT model demonstrating smaller average errors than the162
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overall more accurate direct FFNN.163

Table 3: Performance in exact ISS score prediction for the four tested models. Accuracy was measured by
comparing the predicted testing dataset ISS scores for each model to the expected ISS scores in the NTDB.
RMSE was calculated for each model using the differences between the predicted and expected scores.

Exact ISS Score

Accuracy Root Mean Squared Error

Direct (to ISS) FFNN 76.5% 4.06

Indirect (to AIS) FFNN 74.3% 4.51

Direct (to ISS) NMT 75.9% 3.83

Indirect (to AIS) NMT 79.8% 3.77

Table 4: McNemar statistics and associated adjusted p-values from each post-hoc pairwise McNemar test on
exact ISS score prediction performance. Differences between all pairwise combinations were found to be
statistically significant.

Direct (to ISS) FFNN Indirect (to AIS) FFNN Direct (to ISS) NMT

Indirect (to AIS) FFNN 3,530 [<1 x 10-99] — —

Direct (to ISS) NMT 294 [7.36 x 10-66] 1,785 [<1 x 10-99] —

Indirect (to AIS) NMT 9,806 [<1 x 10-99] 24,311 [<1 x 10-99] 12,439 [<1 x 10-99]

3.3 Accuracy in ISS ≥16 classification prediction

The secondary primary outcome of interest was the accuracy of the four models in predicting the164

ISS ≥16 classification. Similar rankings were seen in ISS ≥16 classification performance compared to165

exact ISS score performance, with the indirect NMT model continuing to have the best accuracy for ISS166

≥16 classification (94.0%), followed by the direct FFNN (93.4%), direct NMT (93.1%), and indirect FFNN167

(93.1%)models (Table 5). Similar Cochran’s Q and post-hoc pairwiseMcNemar testing demonstrated that168

the differences in performance between each pairwise combination was statistically significant except169

for the direct NMT and indirect FFNN comparison (Table 6). On global sensitivity and specificity analysis,170

all four models had similarly high specificity; however, the NMTmodels demonstrated superior sensitivity171

against the FFNNmodels overall.172
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Table 5: Performance in ISS ≥16 classification for the four tested models. Accuracy, sensitivity, and specificity
were measured by comparing the predicted testing dataset ISS ≥16 classifications for each model to the
expected ISS ≥16 classifications from the reported ISS scores in the NTDB.

ISS ≥16 Classification

Accuracy Sensitivity Specificity

Direct (to ISS) FFNN 93.4% 65.1% 97.6%

Indirect (to AIS) FFNN 93.1% 66.3% 97.8%

Direct (to ISS) NMT 93.1% 72.2% 96.8%

Indirect (to AIS) NMT 94.0% 74.9% 97.4%

Table 6: McNemar statistics and associated adjusted p-values from each post-hoc pairwise McNemar test on ISS
≥16 classification performance. Differences between all pairwise combinations were found to be statistically
significant except for the direct NMTmodel and indirect FFNNmodel comparison.

Direct (to ISS) FFNN Indirect (to AIS) FFNN Direct (to ISS) NMT

Indirect (to AIS) FFNN 220 [2.56 x 10-49] — —

Direct (to ISS) NMT 193 [1.72 x 10-43] 0.708 [0.4] —

Indirect (to AIS) NMT 867 [<1 x 10-99] 1,846 [<1 x 10-99] 1,608 [<1 x 10-99]

Table 7 and Table 8 show the results from the subpopulation-stratified sensitivity and specificity173

analyses on the performance of the four models based on sex and age groupings, respectively. Each of174

the four models demonstrated consistently similar specificities across all sex and age subpopulations175

compared to its global specificity. However, large variations were seen across the subpopulations on176

sensitivity analysis. When stratified by sex, all models had a higher sensitivity for the male subgroup than177

their global sensitivity along with the respective inverse for the female subgroup (Table 7). The178

performance rankings of the models on sensitivity mirrored that of the global sensitivity rankings, with179

the NMT models outperforming the FFNNmodels. Furthermore, the NMT models demonstrated smaller180

differences between the male and female subgroups than the FFNN models while the indirect models181

demonstrated higher sensitivities than their respective direct models. When stratified by age grouping,182

analogous patterns in the sensitivity variations to that of the sex-stratified analysis was observed. For all183

models, the 18-64 year group demonstrated the highest sensitivity and was greater than each model’s184

respective global sensitivity (Table 8). Inversely, both the 0-17 and 65+ year groups underperformed in185

sensitivity compared to their respective global sensitivity, with the 65+ year group demonstrating the186

lowest sensitivity for all age-group-stratified subgroups across all models. The NMT models’ sensitivities187

were overall larger than that of the FFNN models’, which is consistent with patterns seen on the global188

analysis. Additionally, the indirect models continued to demonstrate higher sensitivities than their189

respective direct models.190
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Table 7: Sex-stratified subpopulation sensitivity and specificity analysis of the ISS ≥16 classification performance
for the four models.

ISS ≥16 Classification by Sex

Males Females

Sensitivity Specificity Sensitivity Specificity

Direct (to ISS) FFNN 66.2% 97.5% 62.8% 97.8%

Indirect (to AIS) FFNN 67.2% 97.7% 64.4% 97.9%

Direct (to ISS) NMT 73.2% 96.7% 69.9% 96.9%

Indirect (to AIS) NMT 75.3% 97.3% 74.1% 97.5%

Table 8: Age-group-stratified subpopulation sensitivity and specificity analysis of the ISS ≥16 classification
performance for the four models.

ISS ≥16 Classification by Age Group

0 - 17 yrs. 18 - 64 yrs. 65+ yrs.

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Direct (to ISS) FFNN 62.2% 97.9% 69.2% 97.4% 58.1% 97.7%

Indirect (to AIS) FFNN 62.1% 98.2% 69.8% 97.6% 60.9% 97.7%

Direct (to ISS) NMT 68.7% 97.1% 76.6% 96.6% 64.8% 96.9%

Indirect (to AIS) NMT 73.3% 97.6% 77.1% 97.5% 71.1% 97.1%

3.4 Accuracy in MAIS ≥3 classification and AIS code prediction

The two secondary outcomes of interest were the MAIS ≥3 classification and AIS code prediction191

accuracy for the two indirect models. The two direct models were not included in these comparisons as192

they both directly predicted ISS scores without predicting AIS codes as an intermediary step. The193

indirect NMT model was more accurate than the indirect FFNN model in predicting MAIS ≥3194

classifications at 94.0% and 91.8%, respectively (Table 9). McNemar testing demonstrated a statistically195

significant difference in the accuracy of the two models with a p-value of <1 x 10-99. Furthermore, the196

indirect NMTmodel predicted correct AIS codes at a higher percentage than the indirect FFNNmodel at197

88.3% and 79.6% respectively. Wilcoxon signed rank testing of the two paired sets of percentages198

demonstrated a statistically significant pseudo-median difference of 21% for the two non-parametric199

distributions with a p-value of <1 x 10-99.200
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Table 9: Performance in MAIS ≥3 classification for the two indirect models. Accuracy, sensitivity, and specificity
were measured by comparing the predicted testing dataset MAIS ≥3 classifications for each model to the
expected MAIS ≥3 classifications from the reported AIS codes in the NTDB.

MAIS ≥3 Classification

Accuracy Sensitivity Specificity

Indirect (to AIS) FFNN 91.8% 88.7% 94.33%

Indirect (to AIS) NMT 94.0% 93.9% 94.0%

4 DISCUSSION

In this study, three newly proposed machine learning models, direct FFNN, indirect FFNN, and201

direct NMT, were compared against the previously proposed indirect NMT model in predicting injury202

severity scores and classifications from ICD-10 codes. The indirect NMT model was found to notably203

outperform the other models in predicting the exact ISS score, but demonstrated only marginal204

improvement over them in predicting ISS ≥16 and MAIS ≥3 classifications based on accuracy.205

Furthermore, the NMT and FFNN architectures demonstrated similarly high specificities in binary206

classification tests, but the NMTmodels were more sensitive across the board in those samemetrics.207

4.1 FFNN models vs NMT models

The results of this study demonstrate that there exist different, viable applications of deep learning208

in acquiring standardized injury severity data from cases only coded using the ICD-10 system. While209

manual coding by certified experts will continue to remain the gold standard for acquiring injury severity210

information, the option to generate it in situations where manual AIS coding is either impractical or211

impossible would be a powerful tool in the field of injury research. Although the previously proposed212

indirect NMT model provided the most accurate injury information overall, the simpler FFNN models213

could be used instead in specific situations.214

In predicting the exact ISS score and severity classification, both the FFNN and NMT models215

performed similarly well in terms of accuracy, especially with ISS ≥16 classification. Furthermore, both216

approaches were equally specific in accurately predicting binary classification results. However, the NMT217

models generated smaller errors in aggregate compared to the FFNN models based on the RMSE.218

Similar distinctions are seen with both ISS ≥16 and MAIS ≥3 classification, as the NMT models219

demonstrated higher sensitivities than the FFNN models, including on subpopulation analysis. Though220

the exact cause of this stratification is unclear, a potential explanation is that the FFNN approach is not221

as strongly generating associations during the training process due to data spareness, even when using222

an appropriate Adagrad optimizer. This results in muddying the decisiveness of the prediction, both in223

not meeting the 0.3 prediction score cutoff criteria for the multilabel indirect model as well as not224
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generating distinct predictions for the multiclass direct model. On the other hand, the multiple225

multi-head attention and feedforward layers comprising the encoder-decoder structure of the NMT226

lends itself to faster and more decisiveness learning from sparse data given its development initially for227

language translation18. This shortcoming of the FFNN results in an overall underscoring of ISS in the228

direct FFNN case or predicting fewer AIS codes and thereby underestimating the ISS score in the229

indirect FFNN case. This distinction is further supported through the comparison of the indirect FFNN230

and indirect NMT models in their AIS code prediction accuracy, with the indirect NMT significantly231

outperforming the indirect FFNN.232

The other important practical difference between the FFNN and NMT architectures is the233

significantly shorter conversion time of the FFNN models compared to the NMT models. This difference234

is understandable given that the FFNN architecture is significantly smaller with only 4 layers compared235

to the much larger NMT architecture using multiple encoder-decoder units. In situations with limited236

computational resources with respect to both power and space, the smaller FFNN model may be237

preferable or even the only viable option. This is demonstrated with the NMT models requiring at least238

32 GB of RAM compared to the 8 GB of RAM required by the FFNN models during CPU-only testing.239

Additionally, although the FFNN models are outperformed by the NMT models on key metrics, both240

FFNNmodels outperformed other known options for calculating ISS, namely the official AAAMmapping241

and ICDPIC-R10.242

4.2 Direct (ICD to ISS) vs indirect (ICD to AIS to ISS) approaches

Comparison of models’ performance stratified by direct or indirect approach demonstrated a243

statistically significant, but clinically insignificant, difference. For both the FFNN models and the NMT244

models, the use of either a direct or indirect approach resulted in similar accuracies, sensitivities, and245

specificities. Furthermore, no consistency was found in the relative performance of the direct versus the246

indirect models. The direct approach outperformed the indirect approach when using a FFNN247

architecture while the inverse was found when using a NMT architecture. The most notable difference248

between the two approaches arises from computation times, as the direct models were slightly faster in249

conversion compared to their respective indirect counterparts. However, the reduction in computation250

time is significantly smaller than the computation time differences between the FFNN and NMTmodels.251

4.3 Study strengths

The main strengths of this study were the two-by-two comparisons of architectures and252

approaches, the large sample size of the datasets, and the robustness of the testing data. By performing253

a two-by-two comparison using the four different approach-architecture pairs, distinctions and254

inferences could be made about the effects the model architecture or approach independently had on255

the accuracy of its estimations. Additionally, the large sample size from the NTDB provided enough256
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cases to both adequately train the models and help counteract the effects of each individual code’s257

relative sparseness in the database. Furthermore, the large sample size of testing dataset helped258

increased the power of the study. Finally, by using a different year for the testing dataset compared to259

the training dataset, the models’ robustness against expected, small inter-year variability in coding260

practice would also be assessed.261

4.4 Study limitations

There are several important limitations to consider for this study. First, it is unknown whether the262

layers and structures used for the models are the most optimal. Given both the stochastic nature of263

training a deep learning model as well as the variety of layers, activation functions, and sizes that can be264

combinatorially used, it is impossible to know where the true global maximum in performance lies.265

Furthermore, the cutoff used for the indirect FFNN of 0.3 was chosen through analysis of the model’s266

performance on the testing dataset with the goal of maximizing accuracy. However, this cutoff may vary267

for different patient population as the a priori probability of a given AIS code will be different. Second,268

the limitations of the NTDB are propagated into this study from its use. Namely, given the higher acuity269

population that constitutes the NTDB due to how cases are submitted, it is unknown how the270

differences in model performance will change in the setting of a lower acuity population. Further271

validation of these models will be needed to better understand the generalizability of these approaches.272

5 CONCLUSIONS

A variety of deep learning model architectures and approaches can be used in the estimation of273

injury severity with varying levels of accuracy when the resources or data for manual coding with AIS is274

unavailable. The indirect NMT model demonstrated the best performance compared to the other three275

models overall; however, the other three models demonstrated similar efficacy in specific situations,276

namely for binary severity classifications with limited computational resources. In these situations, a less277

computationally intense and faster model may be preferable, especially for the conversions of larger278

datasets.279
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